Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 135: 111084, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33383371

ABSTRACT

BACKGROUND AND PURPOSE: Inflammation has been considered a precipitating event that contributes to neurocognitive dysfunction in minimal hepatic encephalopathy (MHE). Inhibition TLR-4 related inflammation can effectively improve neurocognitive dysfunction of MHE. Our previous study showed that Babao Dan (BBD) effectively inhibited inflammation and ameliorated neurocognitive function in rats with acute hepatic encephalopathy (HE) and chronic HE. The mechanism may lie in the regulation of TLR4 signaling pathway. Therefore, this study aimed to evaluate the role of BBD in the treatment of MHE patients with cirrhosis and to elucidate the underlying mechanism by which BBD regulated TLR4 pathway to alleviate inflammation. METHODS: A randomized controlled trial (n = 62) was conducted to evaluate the clinical efficacy between BBD plus lactulose (n = 31) and lactulose alone (n = 31) in MHE patients by testing neurocognitive function (NCT-A and DST), blood ammonia, liver function (ALT, AST and TBIL) and blood inflammation (IL-1ß, IL-6 and TNF-α). Afterward, we detected NO, inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and the phosphorylation of P65, JNK, ERK as well as P38 in LPS-activated rat primary bone marrow-derived macrophages (BMDMs), peritoneal macrophages (PMs), and mouse primary BMDMs/PMs/microglia/astrocytes, to investigate the underlying mechanism of BBD inhibiting inflammation through TLR4 pathway. Also, the survival rate of mice, liver function (ALT, AST), blood inflammation (IL-1ß, IL-6 and TNF-α), inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and histopathological changes in the liver, brain and lung were measured to assess the anti-inflammatory effect of BBD on neurocognitive function in endotoxin shock/endotoxemia mice. RESULTS: BBD combined with lactulose significantly ameliorated neurocognitive function by decreasing NCT-A (p<0.001) and increasing DST (p<0.001); inhibited systemic inflammation by decreasing IL-1ß (p<0.001), IL-6(p<0.001) and TNF-α (p<0.001); reduced ammonia level (p = 0.005), and improved liver function by decreasing ALT(p = 0.043), AST(p = 0.003) and TBIL (p = 0.026) in MHE patients. Furthermore, BBD inhibited gene and protein expression of IL-1ß, IL-6 and TNF-α as well as NO in rat primary BMDMs/PMs, and mouse primary BMDMs/PMs/microglia/astrocytes in a dose-dependent manner. BBD inhibited the activation of mouse primary BMDMs/PMs/microglia/astrocytes by regulating TLR4 pathway involving the phosphorylation of P65, JNK, ERK and P38. Also, BBD reduced the mortality of mice with endotoxin shock/endotoxemia; serum levels of ALT, AST, IL-1ß, IL-6 and TNF-α; gene expression of IL-1ß, IL-6 and TNF-α in the liver, brain and lung, and tissue damage in the liver and lung. CONCLUSION: Our study provided for the first time clinical and experimental evidence supporting the use of BBD in MHE, and revealed that BBD could play a crucial role in targeting and regulating TLR4 inflammatory pathway to improve neurocognitive function in MHE patients.


Subject(s)
Anti-Inflammatory Agents , Brain , Cognition , Cytokines , Drugs, Chinese Herbal , Hepatic Encephalopathy , Inflammation Mediators , Aged , Animals , Female , Humans , Male , Middle Aged , Pregnancy , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/therapeutic use , Astrocytes/drug effects , Astrocytes/metabolism , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Cells, Cultured , China , Cognition/drug effects , Cytokines/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/therapeutic use , Endotoxemia/drug therapy , Endotoxemia/metabolism , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/physiopathology , Hepatic Encephalopathy/psychology , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Time Factors , Toll-Like Receptor 4/metabolism , Treatment Outcome , Mice
2.
J Ethnopharmacol ; 249: 112301, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31622746

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: BabaoDan (BBD) is a famous traditional Chinese formula frequently used in TCM clinics to eliminate jaundice and treat infectious viral hepatitis. This paper assesses BBD's preventive and therapeutic effects on hepatic encephalopathy after liver cirrhosis (CHE) and acute liver failure (AHE) in rats and explains its possible mechanism of action. METHODS: CHE rat model was established by injection of carbon tetrachloride (CCl4) twice a week for a total of 9 weeks and then by injection of thioacetamide (TAA) to induce hepatic encephalopathy. AHE rat model was established by injection of TAA once a day for a total of 3 days. In CHE rat model, BBD was gavaged once a day at the end of the 6th week until the experiment ended. In AHE rat model,BBD was gavaged once a day 3 days before TAA injection until the experiment ended. The preventive and therapeutic effects of BBD on brain dysfunction, as well as liver injury, pathology and fibrosis were evaluated in vivo. The role of BBD in the regulation of inflammatory factors and myeloid differentiation factor 88/Toll-like receptor 4/nuclear factor kappa-B (TLR4/MyD88/NK-κ B) pathway was detected in both liver and brain in vivo. The rat bone marrow derived macrophages (BMDMs) were activated by Lipopolysaccharide (LPS), and the role of BBD in the regulation of inflammatory factors and NK-κ B pathway were detected in vitro. RESULTS: In CHE rat model: BBD significantly improved the total distance as well as the activity rate of rats. BBD also improved the learning and memory abilities of rats compared with the control group. In addition, BBD effectively decreased ammonia levels and significantly decreased the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBil) and total bile acid (TBA), as well as improved the levels of total protein (TP) and albumin (Alb). In the liver, BBD not only inhibited the gene expressions of tumor necrosis factor alpha (TNF-α), interleukini-6 (IL-6), TLR4, MyD88, and NF-κ B but also inhibited the protein expressions of TLR4, MyD88, NK-κ B and TNF-α. In the brain, BBD inhibited the gene expressions of iNOS, IL-6, TNF-α, TLR-4, MyD88, and NF-κ B, as well as inhibited the protein expressions of TLR4, MyD88, P65 TNF-α and ionized calcium binding adapter molecule 1 (Iba-1). BBD also decreased NO and TNF-α in the blood. IN AHE RAT MODEL: BBD improved neurological scores, blood ammonia levels and the brain inflammatory gene expressions of iNOS, TNF-α and IL-1ß. BBD also improved liver function biomarkers such as ALT, TBil, TBA, TP, ALB and inflammatory and apoptotic gene expressions of TNF-α, IL-1ß, IL-6, Bax, Bcl-2, caspase-9, caspase-3 and NF-κ B. In LPS-activated rat BMDMs, BBD decreased NO and TNF-α production in BMDM culture supernatant. In addition, BBD inhibited the gene expressions of TNF-α, IL-1 ß and IL-6 as well as the phosphorylation of P65. CONCLUSION: BBD can prevent and cure hepatic encephalopathy (HE) derived from both chronic and acute liver diseases. BBD can reduce hyperammonemia as well as the systematic and neurological inflammation. Inflammation is likely an important target of BBD to treat HE. The anti-inflammatory role of BBD may lie in its regulation of the TLR4/MyD88/NF-κ B pathways.


Subject(s)
Ammonia/metabolism , Anti-Inflammatory Agents/pharmacology , Hepatic Encephalopathy/drug therapy , Inflammation/drug therapy , Liver/drug effects , Animals , Disease Models, Animal , Hepatic Encephalopathy/metabolism , Inflammation/metabolism , Liver/metabolism , Liver Failure, Acute/drug therapy , Liver Failure, Acute/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
CNS Neurosci Ther ; 18(1): 14-20, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22280158

ABSTRACT

AIMS: To investigate the anticerebral ischemic properties of YGY-E (apigenin-7-O-ß-D-glucopyranosy l-4'-O-α-L-rhamnopy-ranosid, a flavonoid glycoside extracted from plant phoenix-tail fern), focusing on its effects on neuronal apoptosis. METHODS: In vitro YGY-E treatment was examined in primary cultured rat hippocampal neurons subjected to hypoxia-reoxygenation (H-R) injury. In addition, in vivo effects of YGY-E on neuronal apoptosis were measured by Hoechst staining and in situ DNA end labeling (TUNEL). Finally, B cell lymphoma/lewkmia-2 (Bcl-2) level in ischemic rat brain tissue was evaluated with immunohistochemistry and western blot analyses. RESULTS: In vitro YGY-E (50-100 µg/mL) treatment increased the survival rate compared to that of the vehicle-treated group (P < 0.05 and P < 0.01, respectively). In in vivo experiments, YGY-E (2.5-10 mg/kg) decreased the percentage of apoptotic neurons (P < 0.01), increased Bcl-2 (P < 0.01) in ischemic rat brain tissue. These effects were dose dependent. CONCLUSIONS: Our findings indicate that YGY-E's neuroprotective effects may be because of its inhibition of neuronal apoptosis by increasing Bcl-2 expression.


Subject(s)
Apigenin/therapeutic use , Brain Ischemia/drug therapy , Glycosides/therapeutic use , Neurons/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Animals , Animals, Newborn , Apoptosis/drug effects , Brain/drug effects , Brain/metabolism , Brain Ischemia/pathology , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Hippocampus/cytology , Hypoxia/drug therapy , In Situ Nick-End Labeling , Male , Oxygen/administration & dosage , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...