Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34945425

ABSTRACT

SiC direct bonding using O2 plasma activation is investigated in this work. SiC substrate and n- SiC epitaxy growth layer are activated with an optimized duration of 60s and power of the oxygen ion beam source at 20 W. After O2 plasma activation, both the SiC substrate and n- SiC epitaxy growth layer present a sufficient hydrophilic surface for bonding. The two 4-inch wafers are prebonded at room temperature followed by an annealing process in an atmospheric N2 ambient for 3 h at 300 °C. The scanning results obtained by C-mode scanning acoustic microscopy (C-SAM) shows a high bonding uniformity. The bonding strength of 1473 mJ/m2 is achieved. The bonding mechanisms are investigated through interface analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Oxygen is found between the two interfaces, which indicates Si-O and C-O are formed at the bonding interface. However, a C-rich area is also detected at the bonding interface, which reveals the formation of C-C bonds in the activated SiC surface layer. These results show the potential of low cost and efficient surface activation method for SiC direct bonding for ultrahigh-voltage devices applications.

2.
ACS Appl Mater Interfaces ; 11(38): 35382-35388, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31483596

ABSTRACT

A method for suppressing impurities in GaN thin films grown via plasma-enhanced atomic deposition (PEALD) through the in situ pretreatment of Si (100) substrate with plasma was developed. This approach leads to a superior GaN/Si (100) interface. After pretreatment, the thickness of the interfacial layer between GaN films and the substrates decreases from 2.0 to 1.6 nm, and the oxygen impurity content at the GaN/Si (100) interface reduces from 34 to 12%. The pretreated GaN films exhibit thinner amorphous transition GaN layer of 5.3 nm in comparison with those nonpretreated of 18.0 nm, which indicates the improvement of crystallinity of GaN. High-quality GaN films with enhanced density are obtained because of the pretreatment. This promising approach is considered to facilitate the growth of high-quality thin films via PEALD.

3.
Nanoscale ; 11(8): 3710-3717, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30742183

ABSTRACT

III-nitride solid-state microdisplays have significant advantages, including high brightness and high resolution, for the development of advanced displays, high-definition projectors, head-mounted displays, large-capacity optical communication systems, and so forth. Herein, a high-brightness InGaN/GaN multiple-quantum-well (MQW) nanoemitter array with an ultrahigh resolution of 31 750 dpi was achieved by combining a top-down fabrication with surface passivation of plasma-enhanced atomic layer deposition (PEALD)-grown AlN coating. With regard to the nanometer-level top-down etching, the surface damage or defects on the newly-formed sidewall play a significant role in the photoluminescence (PL) quality. Note that these arrays can be effectively passivated by the PEALD-grown AlN coating with an over 345% PL enhancement. In addition, a sharp band bending at the interface of the luminescent InGaN QW and the AlN coating layer can electrically drift away the photogenerated electrons from the surface traps; this leads to enhancement of the bulk PL radiative recombination with a fast PL decay rate. Therefore, we have demonstrated a feasible way for realizing an advanced nanoemitter array with both high brightness and ultrahigh resolution for future smart displays, high-resolution imaging, big-data optical information systems and so on.

4.
Opt Express ; 26(14): A615-A625, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-30114055

ABSTRACT

The spatial distribution of electric field in photovoltaic multiple quantum wells (MQWs) is extremely important to dictate the mutual competition of photoelectric conversion and optical transition. Here, electric-field-driven photoluminescence (PL) in both steady-state and transient-state has been utilized to directly investigate the internal photoelectric conversion processes in InGaN-based MQW photovoltaic cell. As applying the reversed external electric field, the compensation of the quantum confined stark effect (QCSE) in InGaN QW is beneficial to help the photoabsorbed minor carriers drift out from the localized states, whereas extremely weakening the PL radiative recombination. A directly driven force by the reversed external electric field decreases the transit time of photocarriers drifting in InGaN QW. And hence, the overall dynamic PL decay including both the slow and fast processes gradually speeds up from 19.2 ns at the open-circuit condition to 3.9 ns at a negative bias of -3 V. In particular, the slow PL decay lifetime declines more quickly than that of the fast one. It is the delocalization of photocarriers by electric-field drift that helps to further enhance the high-efficiency photoelectric conversion except for the tunneling transport in InGaN-based MQW photovoltaics. Therefore, it can be concluded that the electric-field PL probe may provide a direct method for evaluating the photoelectric conversion in multilayer quantum structures and related multijunction photovoltaic cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...