Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 11(4): nwae026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38405434

ABSTRACT

Solid solutions are ubiquitous in metals and alloys. Local chemical ordering (LCO) is a fundamental sub-nano/nanoscale process that occurs in many solid solutions and can be used as a microstructure to optimize strength and ductility. However, the formation of LCO has not been fully elucidated, let alone how to provide efficient routes for designing LCO to achieve synergistic effects on both superb strength and ductility. Herein, we propose the formation and control of LCO in negative enthalpy alloys. With engineering negative enthalpy in solid solutions, genetic LCO components are formed in negative enthalpy refractory high-entropy alloys (RHEAs). In contrast to conventional 'trial-and-error' approaches, the control of LCO by using engineering negative enthalpy in RHEAs is instructive and results in superior strength (1160 MPa) and uniform ductility (24.5%) under tension at ambient temperature, which are among the best reported so far. LCO can promote dislocation cross-slip, enhancing the interaction between dislocations and their accumulation at large tensile strains; sustainable strain hardening can thereby be attained to ensure high ductility of the alloy. This work paves the way for new research fields on negative enthalpy solid solutions and alloys for the synergy of strength and ductility as well as new functions.

2.
Nature ; 625(7996): 697-702, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172639

ABSTRACT

Body-centred cubic refractory multi-principal element alloys (MPEAs), with several refractory metal elements as constituents and featuring a yield strength greater than one gigapascal, are promising materials to meet the demands of aggressive structural applications1-6. Their low-to-no tensile ductility at room temperature, however, limits their processability and scaled-up application7-10. Here we present a HfNbTiVAl10 alloy that shows remarkable tensile ductility (roughly 20%) and ultrahigh yield strength (roughly 1,390 megapascals). Notably, these are among the best synergies compared with other related alloys. Such superb synergies derive from the addition of aluminium to the HfNbTiV alloy, resulting in a negative mixing enthalpy solid solution, which promotes strength and favours the formation of hierarchical chemical fluctuations (HCFs). The HCFs span many length scales, ranging from submicrometre to atomic scale, and create a high density of diffusive boundaries that act as effective barriers for dislocation motion. Consequently, versatile dislocation configurations are sequentially stimulated, enabling the alloy to accommodate plastic deformation while fostering substantial interactions that give rise to two unusual strain-hardening rate upturns. Thus, plastic instability is significantly delayed, which expands the plastic regime as ultralarge tensile ductility. This study provides valuable insights into achieving a synergistic combination of ultrahigh strength and large tensile ductility in MPEAs.

3.
Mater Horiz ; 8(3): 948-955, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-34821325

ABSTRACT

Body-centered-cubic (BCC) refractory high-entropy alloys (RHEAs) are being actively pursued due to their potential to outperform existing superalloys at elevated temperatures. One bottleneck problem, however, is that these RHEAs lack tensile ductility and, hence, processability at room temperature. The strategy previously invoked to sustain ductility in high-strength HEAs is to manage dislocation movements via incorporating dispersed obstacles; this, however, may also have embrittlement ramifications. Here, a new strategy is demonstrated to achieve ductile BCC HfNbTiV, via decomposing the BCC arrangement (ß phase) into a ß(BCC1) + ß*(BCC2) arrangement via spinodal decomposition, producing chemical composition modulations and, more importantly, elastic strain on a length scale of a few tens of nanometers. The periodically spaced ß*, with large lattice distortion, is particularly potent in heightening the ruggedness of the terrain for the passage of dislocations. This makes the motion of dislocations sluggish, causing a traffic jam and cross-slip, facilitating dislocation interactions, multiplication, and accumulation. Wavy dislocations form walls that entangle with slip bands, promoting strain hardening and delocalizing plastic strain. A simultaneous combination of high yield strength (1.1 GPa) and tensile strain to failure (28%) is achieved; these values are among the best reported so far for refractory high-entropy alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...