Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38475348

ABSTRACT

Microvascular self-healing composite materials have significant potential for application and their mechanical properties need in-depth investigation. In this paper, the tensile and compressive properties of woven fabric carbon fiber-reinforced polymer (CFRP) laminates containing three-dimensional microvascular channels were investigated experimentally. Several detailed finite element (FE) models were established to simulate the mechanical behavior of the laminate and the effectiveness of different models was examined. The damage propagation process of the microvascular laminates and the influence of microvascular parameters were studied by the validated models. The results show that microvascular channels arranged along the thickness direction (z-direction) of the laminates are critical locations under the loads. The channels have minimal effect on the stiffness of the laminates but cause a certain reduction in strength, which varies approximately linearly with the z-direction channel diameter within its common design range of 0.1~1 mm. It is necessary to consider the resin-rich region formed around microvascular channels in the warp and weft fiber yarns of the woven fabric composite when establishing the FE model. The layers in the model should be assigned with equivalent unidirectional ply material in order to calculate the mechanical properties of laminates correctly.

2.
J Org Chem ; 87(21): 14005-14015, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36210518

ABSTRACT

A facile and effective tandem reaction of ynones and methyl salicylates was developed to obtain a broad range of 3-acyl chromones in moderate-to-excellent yields. This protocol underwent a Michael addition and cyclization process, which exhibited easily accessible substrates, broad substrate scope, and high regioselectivity under mild and transition-metal-free conditions. Moreover, gram-scale reaction and further chemical transformation of the products were also further studied.


Subject(s)
Chromones , Transition Elements , Stereoisomerism , Cyclization , Salicylates
3.
Polymers (Basel) ; 14(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35567026

ABSTRACT

The fatigue properties of composite materials are degraded seriously in hygrothermal environments, so taking into account their influence is very important when evaluating the fatigue life of composite structures. Tensile fatigue experiments of carbon fiber reinforced resin composite cross-ply laminates were conducted in room temperature/dry (RTD), cool temperature/dry (CTD) and elevated temperature/wet (ETW) conditions. The S-N curves and fatigue failure modes of the cross-ply laminates were obtained in three conditions. On this basis, a finite element model was established to discuss the influence of temperature and moisture content on the fatigue properties, as well as a method for determining environmental factors of fatigue life of cross-ply laminates was established. The results show that the saturation moisture absorption and temperature have a significant influence on the tensile fatigue properties of cross-ply laminates. The high-cycle fatigue property is weakened significantly by the saturation moisture absorption and high temperature, but the low-cycle fatigue properties were strengthened in cool temperature conditions. The delamination failure mode in ETW is the most severe, presenting with an obvious necking phenomenon. The influence of temperature has a greater effect than that of moisture content, but moisture absorption would play its affect obviously when temperature exceeds 40 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...