Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 14(1): 3175, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264059

ABSTRACT

Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.


Subject(s)
Nucleosides , Pyrimidine Nucleosides , Humans , Mice , Animals , Nucleosides/metabolism , Membrane Transport Proteins/metabolism , Renal Elimination , Carrier Proteins/metabolism , Antimetabolites , Nucleoside Transport Proteins/metabolism , Kidney/metabolism
3.
Expert Opin Drug Metab Toxicol ; 18(7-8): 459-468, 2022.
Article in English | MEDLINE | ID: mdl-35983889

ABSTRACT

INTRODUCTION: Members of the solute carrier family of organic anion transporting polypeptides are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. In particular, the polymorphic transporters OATP1B1 and OATP1B3 are highly expressed in the liver and have been identified as critical regulators of hepatic elimination. As these transporters are also expressed in cancer cells, the function alteration of these proteins have important consequences for an individual's susceptibility to certain drug-induced side effects, drug-drug interactions, and treatment efficacy. AREAS COVERED: In this mini-review, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of genetic variants in OATP1B1 and OATP1B3 to the transport of anticancer drugs, the role of these carriers in regulation of their disposition and toxicity profiles, and recent advances in attempts to integrate information on transport function in patients to derive individualized treatment strategies. EXPERT OPINION: Based on currently available data, it appears imperative that different aspects of disease, physiology, and drugs of relevance should be evaluated along with an individual's genetic signature, and that tools such as biomarker levels can be implemented to achieve the most reliable prediction of clinically relevant pharmacodynamic endpoints.


Subject(s)
Antineoplastic Agents , Organic Anion Transporters , Antineoplastic Agents/adverse effects , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Membrane Transport Proteins/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics
4.
DNA Repair (Amst) ; 109: 103260, 2022 01.
Article in English | MEDLINE | ID: mdl-34883264

ABSTRACT

The xeroderma pigmentosum group A (XPA) protein plays an essential role in the removal of UV photoproducts and other bulky lesions from DNA as a component of the nucleotide excision repair (NER) machinery. Using cell lysates prepared from confluent cultures of human cells and from human skin epidermis, we observed an additional XPA antibody-reactive band on immunoblots that was approximately 3-4 kDa smaller than the native, full-length XPA protein. Biochemical studies revealed this smaller molecular weight XPA species to be due to proteolysis at the C-terminus of the protein, which negatively impacted the ability of XPA to interact with the NER protein TFIIH. Further work identified the endopeptidase cathepsin L, which is expressed at higher levels in quiescent cells, as the protease responsible for cleaving XPA during cell lysis. These results suggest that supplementation of lysis buffers with inhibitors of cathepsin L is important to prevent cleavage of XPA during lysis of confluent cells.


Subject(s)
Cathepsin L/metabolism , Xeroderma Pigmentosum Group A Protein/metabolism , Cathepsin L/antagonists & inhibitors , Cells, Cultured , DNA Repair , Humans , Proteolysis , Xeroderma Pigmentosum Group A Protein/isolation & purification
5.
Sci Rep ; 11(1): 17997, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504274

ABSTRACT

Nucleotide excision repair (NER) and cell cycle checkpoints impact the ability of the anti-cancer drug cisplatin to inhibit cell proliferation and induce cell death. Genetic studies have shown that both NER and cell cycle progression are impacted by the circadian clock, which has emerged as a novel pharmacological target for the treatment of various disease states. In this study, cultured human cell lines were treated with combinations of cisplatin and the circadian clock modulating compounds KS15 and SR8278, which enhance circadian clock transcriptional output by inhibiting the activities of the cryptochrome and REV-ERB proteins, respectively. Treatment of cells with KS15 and SR8278 protected cells against the anti-proliferative effects of cisplatin and increased the expression of NER factor XPA and cell cycle regulators Wee1 and p21 at the mRNA and protein level. Correlated with these molecular changes, KS15 and SR8278 treatment resulted in fewer unrepaired cisplatin-DNA adducts in genomic DNA and a higher fraction of cells in the G1 phase of the cell cycle. Thus, the use of pharmacological agents targeting the circadian clock could be a novel approach to modulate the responses of normal and cancer cells to cisplatin chemotherapy regimens.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Cryptochromes/antagonists & inhibitors , DNA Adducts/drug effects , DNA Adducts/pharmacology , DNA Repair/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors , A549 Cells , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Circadian Clocks/drug effects , Drug Resistance, Neoplasm/drug effects , HaCaT Cells , Humans , Isoquinolines/pharmacology , Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Thiophenes/pharmacology , Xeroderma Pigmentosum Group A Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...