Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 81(15): 6505-14, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27314892

ABSTRACT

Stacking interactions between aromatic compounds and nucleobases are crucial in recognition of nucleotides and nucleic acids, but a comprehensive understanding of the strength and selectivity of these interactions in aqueous solution has been elusive. To this end, model complexes have been designed and analyzed by experiment and theory. For the first time, stacking free energies between five nucleobases and anthracene were determined experimentally from thermodynamic double mutant cycles. Three different experimental methods were proposed and evaluated. The dye prefers to bind nucleobases in the order (kcal/mol): G (1.3) > T (0.9) > U (0.8) > C (0.5) > A (0.3). The respective trend of interaction free energies extracted from DFT calculations correlates to that obtained experimentally. Analysis of the data suggests that stacking interactions dominate over hydrophobic effects in an aqueous solution and can be predicted with DFT calculations.

2.
J Phys Chem A ; 120(15): 2443-58, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27002338

ABSTRACT

Minimal basis sets, denoted DSBSenv, based on the segmented basis sets of Ahlrichs and co-workers have been developed for use as environmental basis sets for the domain-specific basis set (DSBS) incremental scheme with the aim of decreasing the CPU requirements of the incremental scheme. The use of these minimal basis sets within explicitly correlated (F12) methods has been enabled by the optimization of matching auxiliary basis sets for use in density fitting of two-electron integrals and resolution of the identity. The accuracy of these auxiliary sets has been validated by calculations on a test set containing small- to medium-sized molecules. The errors due to density fitting are about 2-4 orders of magnitude smaller than the basis set incompleteness error of the DSBSenv orbital basis sets. Additional reductions in computational cost have been tested with the reduced DSBSenv basis sets, in which the highest angular momentum functions of the DSBSenv auxiliary basis sets have been removed. The optimized and reduced basis sets are used in the framework of the domain-specific basis set of the incremental scheme to decrease the computation time without significant loss of accuracy. The computation times and accuracy of the previously used environmental basis and that optimized in this work have been validated with a test set of medium- to large-sized systems. The optimized and reduced DSBSenv basis sets decrease the CPU time by about 15.4% and 19.4% compared with the old environmental basis and retain the accuracy in the absolute energy with standard deviations of 0.99 and 1.06 kJ/mol, respectively.

3.
J Chem Theory Comput ; 12(1): 65-78, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26605975

ABSTRACT

The incremental scheme makes it possible to compute CCSD(T) correlation energies to high accuracy for large systems. We present the first extension of this fully automated black-box approach to open-shell systems using an Unrestricted Hartree-Fock (UHF) wave function, extending the efficient domain-specific basis set approach to handle open-shell references. We test our approach on a set of organic and metal organic structures and molecular clusters and demonstrate standard deviations from canonical CCSD(T) values of only 1.35 kJ/mol using a triple ζ basis set. We find that the incremental scheme is significantly more cost-effective than the canonical implementation even for relatively small systems and that the ease of parallelization makes it possible to perform high-level calculations on large systems in a few hours on inexpensive computers. We show that the approximations that make our approach widely applicable are significantly smaller than both the basis set incompleteness error and the intrinsic error of the CCSD(T) method, and we further demonstrate that incremental energies can be reliably used in extrapolation schemes to obtain near complete basis set limit CCSD(T) reaction energies for large systems.

4.
J Comput Chem ; 35(8): 634-43, 2014 Mar 30.
Article in English | MEDLINE | ID: mdl-24482156

ABSTRACT

In this work, we use MP2 and coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] as well as their corresponding explicitly correlated (F12) counterparts to compute the interaction energies of water icosamers. The incremental scheme is used to compute benchmark energies at the CCSD(T)/CBS(45) and CCSD(T)(F12*)/cc-pVQZ-F12 level of theory. The four structures, dodecahedron, edge sharing, face sharing, and fused cubes, are part of the WATER27 test set and therefore, highly accurate interaction energies are required. All methods applied in this work lead to new benchmark energies for these four systems. To obtain these values, we carefully analyze the convergence of the interaction energies with respect to the basis set. Furthermore, we investigate the influence of the basis set superposition error and the core-valence correlation. The interaction energies are: dodecahedron -198.6 kcal/mol, edge sharing -209.7 kcal/mol, face sharing -208.0 kcal/mol, and fused cubes -208.0 kcal/mol. For water clusters, we recommend to use the PW6B95 density functional of Truhlar in combination with Grimme's dispersion correction (D3), as the mean absolute error is 0.9 and the root mean-squared deviation is only 1.4 kcal/mol.


Subject(s)
Quantum Theory , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...