Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 26(3): 886-98, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27411258

ABSTRACT

Small pelagic fish species present complex dynamics that challenge population biologists and prevent effective management. Huge fluctuations in abundance have traditionally been associated with external environmental forcing on recruitment, exempting other processes from contributing to fisheries collapse. On the other hand, theory predicts that density dependence and overexploitation can increase the likelihood of population oscillations. Here, we combined nonlinear population modeling with Bayesian analysis to examine the importance of different regulatory mechanisms on the collapse of European anchovy (Engraulis encrasicolus) in the Bay of Biscay. The approach relied on detailed population data and in a careful characterization of changes in the environment experienced by anchovy early stages based mainly on satellite remote sensing. Alternative hypotheses about external forcing on recruitment determined prediction skill and provided alternative interpretations of the causes behind the collapse. Density dependence was weak and unable to generate huge oscillations. Instead, models considering changes in phytoplankton phenology or in larval drift presented the best prediction skill. Nevertheless, an extensive surrogate analysis showed that environmental fluctuations alone barely explain anchovy collapse without considering the impact of fishing. Our results highlight the effectiveness of a Bayesian approach to analyze the dynamics and collapse of managed populations.


Subject(s)
Environmental Monitoring , Fisheries , Fishes/physiology , Models, Biological , Animals , Atlantic Ocean , Bayes Theorem , Bays , Biomass , Climate Change , Computer Simulation , Population Dynamics , Seasons , Time Factors
2.
Glob Chang Biol ; 20(3): 698-712, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23943398

ABSTRACT

Seasonal pulses of phytoplankton drive seasonal cycles of carbon fixation and particle sedimentation, and might condition recruitment success in many exploited species. Taking advantage of long-term series of remotely sensed chlorophyll a (1998-2012), we analyzed changes in phytoplankton seasonality in the North Atlantic Ocean. Phytoplankton phenology was analyzed based on a probabilistic characterization of bloom incidence. This approach allowed us to detect changes in the prevalence of different seasonal cycles and, at the same time, to estimate bloom timing and magnitude taking into account uncertainty in bloom detection. Deviations between different sensors stressed the importance of a prolonged overlap between successive missions to ensure a correct assessment of phenological changes, as well as the advantage of semi-analytical chlorophyll algorithms over empirical ones to reduce biases. Earlier and more intense blooms were detected in the subpolar Atlantic, while advanced blooms of less magnitude were common in the Subtropical gyre. In the temperate North Atlantic, spring blooms advanced their timing and decreased in magnitude, whereas fall blooms delayed and increased their intensity. At the same time, the prevalence of locations with a single autumn/winter bloom or with a bimodal seasonal cycle increased, in consonance with a poleward expansion of subtropical conditions. Changes in bloom timing and magnitude presented a clear signature of environmental factors, especially wind forcing, although changes on incident photosynthetically active radiation and sea surface temperature were also important depending on latitude. Trends in bloom magnitude matched changes in mean chlorophyll a during the study period, suggesting that seasonal peaks drive long-term trends in chlorophyll a concentration. Our results link changes in North Atlantic climate with recent trends in the phenology of phytoplankton, suggesting an intensification of these impacts in the near future.


Subject(s)
Chlorophyll/analysis , Phytoplankton/physiology , Atlantic Ocean , Chlorophyll A , Eutrophication , Extraterrestrial Environment , Remote Sensing Technology , Seasons , Temperature , Wind
3.
PLoS One ; 8(7): e69159, 2013.
Article in English | MEDLINE | ID: mdl-23935946

ABSTRACT

Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E). Our design included two phytoplankton size fractions (0.2-5 µm and >5 µm) and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11-1.60 d(-1)), especially in the case of the large fraction. Grazing rates were also high (0.15-1.29 d(-1)), suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres.


Subject(s)
Phytoplankton/growth & development , Tropical Climate , Zooplankton/growth & development , Animals , Atlantic Ocean , Biomass , Chlorophyll/metabolism , Chlorophyll A , Geography , Oceanography
5.
Mar Pollut Bull ; 56(6): 1192-200, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18353402

ABSTRACT

An assessment of the effects of the 'Prestige' oil spill on intertidal, macroalgal assemblages was carried out comparing abundance data obtained before and after the spill. Four zones in the North and Northwest coast of Spain were sampled, one of them located at the immediate vicinity of the spill, the zone most heavily oiled. Macroalgal assemblages had similar structure between years. Neither critical decrease in abundance of the dominant macroalgae, nor increase in opportunistic species were found. Some differences in abundance were observed, but they did not show any pattern, being more likely the result of the natural variability of the assemblage. Extensive, but not intense fuel deposition on the shores and a limited use of aggressive cleanup methods are suggested as possible causes for the lack of the effects in these assemblages after the 'Prestige' oil spill.


Subject(s)
Disasters , Ecosystem , Eukaryota/drug effects , Fuel Oils/adverse effects , Seawater/chemistry , Atlantic Ocean , Ships , Spain , Water Pollutants, Chemical/adverse effects
6.
Proc Biol Sci ; 273(1603): 2831-8, 2006 Nov 22.
Article in English | MEDLINE | ID: mdl-17015313

ABSTRACT

Much interest has recently been devoted to reconstructing the dynamic structure of ecological systems on the basis of time-series data. Using 10 years of monthly data on phyto- and zooplankton abundance from the Bay of Biscay (coastal to shelf-break sites), we demonstrate that the interaction between these two plankton components is approximately linear, whereas the effects of environmental factors (nutrients, temperature, upwelling and photoperiod) on these two plankton population growth rates are nonlinear. With the inclusion of the environmental factors, the main observed seasonal and inter-annual dynamic patterns within the studied plankton assemblage also indicate the prevalence of bottom-up regulatory control.


Subject(s)
Ecosystem , Plankton/growth & development , Seasons , Animals , Biomass , Computer Simulation , Food Chain , Models, Biological , Oceans and Seas , Photoperiod , Phytoplankton/growth & development , Population Dynamics , Temperature , Zooplankton/growth & development
7.
Mar Pollut Bull ; 53(5-7): 272-86, 2006.
Article in English | MEDLINE | ID: mdl-16300801

ABSTRACT

Chlorophyll, primary production, zooplankton biomass and the species composition of phytoplankton and zooplankton were studied in 2003, after the Prestige shipwreck. The information obtained was compared to previous data series available for the area affected by the spill. A large data series on plankton variables for the N-NW Spanish coast existed, and therefore a realistic evaluation of the effects by comparison with the range of natural variability could be carried out. We emphasized the evaluation of impact during the spring bloom, the first important biological event after the spill. Some minor changes were observed occasionally, but they did not show any clear pattern and were more related to the natural variability of the ecosystem than to effect of the spill. Plankton community structure did not undergo any changes. Only a few species were more abundant during spring 2003 than in previous years. No significant changes were detected in the planktonic community during productive periods, such as the spring bloom and the summer blooms related to intrusions of East North Atlantic Central Waters. The lack of evidence of the effects of the spill on planktonic communities is discussed in terms of the characteristics of the fuel, the high dynamics of the water masses, the biological mechanisms through which the fuel from the surface waters is transferred to the sea floor and, particularly, the influence of the natural variability by means of large and meso-scale hydrographic processes in the area under study. At the present time it is not possible to determine any minor effects the spill may have had on the plankton owing to the great variability of the planktonic cycles and the short-term impact of the oil from the Prestige on the pelagic system.


Subject(s)
Disasters , Fuel Oils , Hydrocarbons, Aromatic/chemistry , Plankton/metabolism , Water Pollutants, Chemical/analysis , Animals , Atlantic Ocean , Humans , Hydrocarbons, Aromatic/toxicity , Plankton/drug effects , Seawater , Ships , Spain , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...