Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(10): 107740, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37720082

ABSTRACT

Getting to a net-zero emissions economy requires faster development and diffusion of novel clean energy technologies. We exploit a rare natural experiment to study the impact of an open-access mandate on the diffusion of scientific research into patented technologies. From 2014 onwards, the U.S. Department of Energy (DOE) required its 17 National Laboratories (NLs) to publish all peer-reviewed scientific articles without a paywall. Using data from more than 300,000 scientific publications between 2012 and 2018, we show that scientific articles subject to the mandate were used on average 42% more in patents, despite embargo periods of up to 12 months. We also show that articles subject to the mandate were not cited more frequently by other academic articles. Our findings suggest that the mandate primarily contributed to technological development but has not led to additional academic research. Lastly, we show that small firms were the primary beneficiaries of the increased diffusion of scientific knowledge.

2.
iScience ; 24(1): 101995, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33506185

ABSTRACT

Innovation in clean-energy technologies is central toward a net-zero energy system. One key determinant of technological innovation is the integration of external knowledge, i.e., knowledge spillovers. However, extant work does not explain how individual spillovers come about: the mechanisms and enablers of these spillovers. We ask how knowledge from other technologies, sectors, or scientific disciplines is integrated into the innovation process in an important technology for a net-zero future: lithium-ion batteries (LIBs), based on a qualitative case study using extant literature and an elite interview campaign with key inventors in the LIB field and R&D/industry experts. We identify the breakthrough innovations in LIBs, discuss the extent to which breakthrough innovations-plus a few others-have resulted from spillovers, and identify different mechanisms and enablers underlying these spillovers, which can be leveraged by policymakers and R&D managers who are interested in facilitating spillovers in LIBs and other clean-energy technologies.

3.
Risk Anal ; 37(2): 315-330, 2017 02.
Article in English | MEDLINE | ID: mdl-27031439

ABSTRACT

Expert elicitations are now frequently used to characterize uncertain future technology outcomes. However, their usefulness is limited, in part because: estimates across studies are not easily comparable; choices in survey design and expert selection may bias results; and overconfidence is a persistent problem. We provide quantitative evidence of how these choices affect experts' estimates. We standardize data from 16 elicitations, involving 169 experts, on the 2030 costs of five energy technologies: nuclear, biofuels, bioelectricity, solar, and carbon capture. We estimate determinants of experts' confidence using survey design, expert characteristics, and public R&D investment levels on which the elicited values are conditional. Our central finding is that when experts respond to elicitations in person (vs. online or mail) they ascribe lower confidence (larger uncertainty) to their estimates, but more optimistic assessments of best-case (10th percentile) outcomes. The effects of expert affiliation and country of residence vary by technology, but in general: academics and public-sector experts express lower confidence than private-sector experts; and E.U. experts are more confident than U.S. experts. Finally, extending previous technology-specific work, higher R&D spending increases experts' uncertainty rather than resolves it. We discuss ways in which these findings should be seriously considered in interpreting the results of existing elicitations and in designing new ones.

4.
PLoS One ; 11(11): e0164500, 2016.
Article in English | MEDLINE | ID: mdl-27820831

ABSTRACT

Several developing countries seek to build knowledge-based economies by attempting to expand scientific research capabilities. Characterizing the state and direction of progress in this arena is challenging but important. Here, we employ three metrics: a classical metric of productivity (publications per person), an adapted metric which we denote as Revealed Scientific Advantage (developed from work used to compare publications in scientific fields among countries) to characterize disciplinary specialty, and a new metric, scientific indigeneity (defined as the ratio of publications with domestic corresponding authors) to characterize the locus of scientific activity that also serves as a partial proxy for local absorptive capacity. These metrics-using population and publications data that are available for most countries-allow the characterization of some key features of national scientific enterprise. The trends in productivity and indigeneity when compared across other countries and regions can serve as indicators of strength or fragility in the national research ecosystems, and the trends in specialty can allow regional policy makers to assess the extent to which the areas of focus of research align (or not align) with regional priorities. We apply the metrics to study the Middle East and North Africa (MENA)-a region where science and technology capacity will play a key role in national economic diversification. We analyze 9.8 million publication records between 1981-2013 in 17 countries of MENA from Morocco to Iraq and compare it to selected countries throughout the world. The results show that international collaborators increasingly drove the scientific activity in MENA. The median indigeneity reached 52% in 2013 (indicating that almost half of the corresponding authors were located in foreign countries). Additionally, the regional disciplinary focus in chemical and petroleum engineering is waning with modest growth in the life sciences. We find repeated patterns of stagnation and contraction of scientific activity for several MENA countries contributing to a widening productivity gap on an international comparative yardstick. The results prompt questions about the strength of the developing scientific enterprise and highlight the need for consistent long-term policy for effectively addressing regional challenges with domestic research.


Subject(s)
Science/statistics & numerical data , Statistics as Topic , Africa, Northern , Middle East , Publications/statistics & numerical data
5.
Proc Natl Acad Sci U S A ; 113(35): 9682-90, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27519800

ABSTRACT

This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset.

6.
Environ Sci Technol ; 48(19): 11082-9, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25215622

ABSTRACT

The energy sector is increasingly facing water scarcity constraints in many regions around the globe, especially in China, where the unprecedented large-scale construction of coal-fired thermal power plants is taking place in its extremely arid northwest regions. As a response to water scarcity, air-cooled coal power plants have experienced dramatic diffusion in China since the middle 2000s. By the end of 2012, air-cooled coal-fired thermal power plants in China amounted to 112 GW, making up 14% of China's thermal power generation capacity. But the water conservation benefit of air-cooled units is achieved at the cost of lower thermal efficiency and consequently higher carbon emission intensity. We estimate that in 2012 the deployment of air-cooled units contributed an additional 24.3-31.9 million tonnes of CO2 emissions (equivalent to 0.7-1.0% of the total CO2 emissions by China's electric power sector), while saving 832-942 million m(3) of consumptive water use (about 60% of the total annual water use of Beijing) when compared to a scenario with water-cooled plants. Additional CO2 emissions from air-cooled plants largely offset the CO2 emissions reduction benefits from Chinese policies of retiring small and outdated coal plants. This water-carbon trade-off is poised to become even more significant by 2020, as air-cooled units are expected to grow by a factor of 2-260 GW, accounting for 22% of China's total coal-fired power generation capacity.


Subject(s)
Carbon/analysis , Coal , Industry , Power Plants , Water/analysis , Air , Air Pollutants/analysis , Air Pollution/analysis , Carbon Dioxide/analysis , China , Diffusion , Fresh Water , Geography , Models, Theoretical , Water Supply
7.
Environ Sci Technol ; 47(24): 14459-67, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24125477

ABSTRACT

The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.


Subject(s)
Conservation of Natural Resources , Energy-Generating Resources , Water Cycle , Animals , China , Conservation of Natural Resources/economics , Environment , Geography , Models, Theoretical , Water , Water Supply/economics
8.
J Environ Manage ; 102: 184-92, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22504624

ABSTRACT

Saudi Arabia is the third-largest per capita water user worldwide and has addressed the disparity between its renewable water resources and domestic demand primarily through desalination and the abstraction of non-renewable groundwater. This study evaluates the potential costs of this approach in the industrial and municipal sectors, exploring economic, energy, and environmental costs (including CO2 emissions and possible coastal impacts). Although the energy intensity of desalination is a global concern, it is particularly urgent to rethink water supply options in Saudi Arabia because the entirety of its natural gas production is consumed domestically, primarily in petrochemical and desalination plants. This burgeoning demand is necessitating the development of more expensive high-sulfur gas resources that could make desalination even pricier. The evolving necessity to conserve non-renewable water and energy resources and mitigate GHG emissions in the region also requires policy makers to weigh in much more considerably the energy and environmental costs of desalination. This paper suggests that in Saudi Arabia, the implementation of increased water conservation and reuse across the oil and natural gas sectors could conserve up to 29% of total industrial water withdrawals at costs recovered over 0-30 years, depending on the specific improvement. This work also indicates that increasing wastewater treatment and reuse in six high-altitude inland cities could save a further $225 million (2009 dollars) and conserve 2% of Saudi Arabia's annual electricity consumption. By these estimates, some anticipated investments in desalination projects could be deferred by improving water efficiency in industry and prioritizing investment in sewage and water distribution networks that would ensure more effective water reclamation and reuse. Simultaneously, such initiatives would conserve non-renewable natural gas resources and could help prevent the lock-in of potentially unnecessary desalination infrastructure that is likely to become more energy and cost efficient in future.


Subject(s)
Conservation of Energy Resources/methods , Recycling , Water Purification , Water/chemistry , Groundwater , Saudi Arabia
9.
PLoS One ; 7(3): e31824, 2012.
Article in English | MEDLINE | ID: mdl-22427809

ABSTRACT

The need for policy makers to understand science and for scientists to understand policy processes is widely recognised. However, the science-policy relationship is sometimes difficult and occasionally dysfunctional; it is also increasingly visible, because it must deal with contentious issues, or itself becomes a matter of public controversy, or both. We suggest that identifying key unanswered questions on the relationship between science and policy will catalyse and focus research in this field. To identify these questions, a collaborative procedure was employed with 52 participants selected to cover a wide range of experience in both science and policy, including people from government, non-governmental organisations, academia and industry. These participants consulted with colleagues and submitted 239 questions. An initial round of voting was followed by a workshop in which 40 of the most important questions were identified by further discussion and voting. The resulting list includes questions about the effectiveness of science-based decision-making structures; the nature and legitimacy of expertise; the consequences of changes such as increasing transparency; choices among different sources of evidence; the implications of new means of characterising and representing uncertainties; and ways in which policy and political processes affect what counts as authoritative evidence. We expect this exercise to identify important theoretical questions and to help improve the mutual understanding and effectiveness of those working at the interface of science and policy.


Subject(s)
Interdisciplinary Communication , Public Policy/trends , Research Design , Decision Making, Organizational , England
SELECTION OF CITATIONS
SEARCH DETAIL
...