Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Beilstein J Nanotechnol ; 14: 467-477, 2023.
Article in English | MEDLINE | ID: mdl-37091284

ABSTRACT

Green chromium and red iron oxides are technically important pigments due to their high color intensity, good dispersibility in paints, and superior hiding power. We report on the synthesis of colored pigments of mixed oxides with a corundum-type structure. The pigments are obtained via the addition of coloring ions to boehmite from recycled metallic aluminium. X-ray diffractometry (XRD) and Raman spectroscopy confirmed the crystallographic phase. Additionally, the oxidation state 3+ responsible for the greenish (chromium) and reddish (iron) coloration of the mixed oxides was confirmed by XPS and visible-light absorption measurements. The colorimetric stability of the oxides in acid and alkaline environments was evaluated. After 240 h of exposure to harsh environments, both pigments demonstrated stability and showed no strong color difference.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049296

ABSTRACT

Co-abietate and Cu-abietate complexes were obtained by a low-cost and eco-friendly route. The synthesis process used Pinus elliottii resin and an aqueous solution of CuSO4/CoSO4 at a mild temperature (80 °C) without organic solvents. The obtained complexes are functional pigments for commercial architectural paints with antipathogenic activity. The pigments were characterized by Fourier-transform infrared spectroscopy (FTIR), mass spectrometry (MS), thermogravimetry (TG), near-edge X-ray absorption fine structure (NEXAFS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and colorimetric analysis. In addition, the antibacterial efficiency was evaluated using the minimum inhibitory concentration (MIC) test, and the antiviral tests followed an adaptation of the ISO 21702:2019 guideline. Finally, virus inactivation was measured using the RT-PCR protocol using 10% (w/w) of abietate complex in commercial white paint. The Co-abietate and Cu-abietate showed inactivation of >4 log against SARS-CoV-2 and a MIC value of 4.50 µg·mL-1 against both bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The results suggest that the obtained Co-abietate and Cu-abietate complexes could be applied as pigments in architectural paints for healthcare centers, homes, and public places.

3.
Antibiotics (Basel) ; 12(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36978381

ABSTRACT

The growing concern about the emergence of increasingly antibiotic-r4esistant bacteria imposes the need to search and develop drugs to combat these microorganisms. This, combined with the search for low-cost synthesis methods, was the motivation for the elaboration of this work. Abietic acid present in the resin of Pinus elliotti var. elliotti was used to generate a sodium salt by salification. The synthesis route was low-cost, consisting of only two reaction steps at mild temperatures without toxic organic solvents, and eco-friendly and easy to conduct on an industrial scale. Sodium abietate (Na-C20H29O2) was characterized by mass spectrometry, infrared spectroscopy, elemental analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. To perform the antimicrobial tests, the determination of minimum inhibitory concentration and the disk diffusion assay was performed. The results obtained showed that the salt Na abietate performed an antimicrobial action against the bacterial strains S. aureus, E. coli, L.monocytogenes, and S. enterica Typhimurium and the yeast C. albicans. The disk diffusion test showed a high inhibition potential against S. enterica compared to the standard antimicrobial tetracycline, as an inhibition index of 1.17 was found. For the other bacterial strains, the inhibition values were above 40%. The MIC test showed promising results in the inhibition of E. coli, L. monocytogenes, and C. albicans, indicating bacteriostatic activity against the first microorganism and bactericidal and fungicidal activities against the others. Therefore, the results showed the action of Na abietate as a possible effective antimicrobial drug, highlighting its sustainability within a circular economy.

4.
Materials (Basel) ; 16(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36837325

ABSTRACT

Developing strategies for the green synthesis of novel materials, such as pigments for protection from solar radiation, is a fundamental research subject in material science to mitigate the heat island effect. Within this perspective, the current study reports on the synthesis of blue pigments of ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) using recycled metallic aluminum (discarded can seal) with reflective properties of Near-infrared radiation. The pigments were characterized by XRD, SEM, XPS, UV-Vis, NIR diffuse reflectance spectroscopy, and CIE-1976 L*a*b* color measurements. The wettability of the coatings containing the synthesized pigments was also evaluated. The structural characterization showed that the pigments present the Gahnite crystalline phase. Colorimetric measurements obtained by the CIEL*a*b* method show values correlated to blue pigments attributed to Co2+ ions in tetrahedral sites. The pigments exhibit high near-infrared solar reflectance (with R% ≥ 60%), with an enhancement of nearly 20% for the pigment-containing neodymium when applied in white paint, indicating that the prepared compounds have the potential to be energy-saving color pigments for coatings.

5.
Materials (Basel) ; 16(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36676431

ABSTRACT

The present study described three synthesis routes using different natural polysaccharides as low-cost non-toxic fuels and complexing agents for obtaining MgO. Cassava starch, Aloe vera leaves (mainly acemannan) gel, and citric pectin powder were mixed with magnesium nitrate salt and calcined at 750 °C for 2 h. The samples were named according to the polysaccharide: cassava starch (MgO-St), citrus pectin (MgO-CP), and Aloe vera (MgO-Av). X-ray diffraction identified the formation of a monophasic periclase structure (FCC type) for the three samples. The N2 adsorption/desorption isotherms (B.E.T. method) showed an important difference in textural properties, with a higher pore volume (Vmax = 89.76 cc/g) and higher surface area (SA = 43.93 m2/g) obtained for MgO-St, followed by MgO-CP (Vmax = 11.01 cc/g; SA = 7.01 m2/g) and MgO-Av (Vmax = 6.44 cc/g; SA = 6.63 m2/g). These data were consistent with the porous appearance observed in SEM images. Porous solids are interesting as adsorbents for removing metallic and molecular ions from wastewater. The removal of copper ions from water was evaluated, and the experimental data at equilibrium were adjusted according to the Freundlich, Langmuir, and Temkin isotherms. According to the Langmuir model, the maximum adsorption capacity (qmax) was 6331.117, 5831.244, and 6726.623 mg·g-1 for the adsorbents MgO-St, MgO-Av, and MgO-CP, respectively. The results of the adsorption isotherms indicated that the synthesized magnesium oxides could be used to decrease the amount of Cu2+ ions in wastewater.

6.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500967

ABSTRACT

The COVID-19 pandemic has increased the need for developing disinfectant surfaces as well as reducing the spread of infections on contaminated surfaces and the contamination risk from the fomite route. The present work reports on the antiviral activity of coatings containing ZnO particles obtained by two simple synthesis routes using Aloe vera (ZnO-aloe) or cassava starch (ZnO-starch) as reaction fuel. After detailed characterization using XRD and NEXAFS, the obtained ZnO particles were dispersed in a proportion of 10% with two different waterborne acrylic coatings (binder and commercial white paint) and brushed on the surface of polycarbonates (PC). The cured ZnO/coatings were characterized by scanning electron microscopes (SEM) and energy-dispersive X-ray spectroscopy (EDS). Wettability tests were performed. The virucidal activity of the ZnO particles dispersed in the waterborne acrylic coating was compared to a reference control sample (PC plates). According to RT-PCR results, the ZnO-aloe/coating displays the highest outcome for antiviral activity against SARS-CoV-2 using the acrylic binder, inactivating >99% of the virus after 24 h of contact relative to reference control.

7.
Molecules ; 27(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36235216

ABSTRACT

The search for less expensive and viable products is always one of the challenges for research development. Commonly, the synthesis of coordination compounds involves expensive ligands, through expensive and low-yield routes, in addition to generating toxic and unusable residues. In this work, the organic ligand used is derived from the resin of a reforestation tree, Pinus elliottii var. elliottii. The synthesis method used Pinus resin and an aqueous solution of vanadium(III) chloride at a temperature of 80 °C. The procedure does not involve organic solvents and does not generate toxic residues, thus imparting the complex formation reaction a green chemistry character. The synthesis resulted in an unprecedented oxovanadium(IV)-bis(abietate) complex, which was characterized by mass spectrometry (MS), chemical analysis (CHN), vibrational (FTIR) and electronic spectra (VISIBLE), X-ray diffraction (XRD), and thermal analysis (TG/DTA). Colorimetric studies were performed according to the CIELAB color space. The structural formula found, consisted of a complex containing two abietate ligands, [VO(C20H29O2)2]. The VO(IV)-bis(abietate) complex was applied against microorganisms and showed promising results in antibacterial and antifungal activity. The best result of inhibitory action was against the strains of Gram-positive bacteria S. aureus and L. monocytogenes, with minimum inhibitory concentration (MIC) values of 62.5 and 125 µmol L−1, respectively. For Gram-negative strains the results were 500 µmol L−1 for E. coli; and 1000 µmol L−1 for Salmonella enterica Typhimurium. Antifungal activity was performed against Candida albicans, where the MIC was 15.62 µmol L−1, and for C. tropicalis it was 62.5 µmol L−1. According to the MFC analysis, the complex presented, in addition to the fungistatic action, a fungicidal action, as there was no growth of fungi on the plates tested. The results found for the tests demonstrate that the VO(IV)-bis(abietate) complex has great potential as an antimicrobial and mainly antifungal agent. In this way, the pigmented ink with antimicrobial activity could be used in environments with a potential risk of contamination, preventing the spread of microorganisms harmful to health.


Subject(s)
Anti-Infective Agents , Antifungal Agents , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans , Chlorides , Escherichia coli , Ligands , Microbial Sensitivity Tests , Solvents , Staphylococcus aureus , Vanadium/pharmacology
8.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014636

ABSTRACT

We report on the synthesis of boehmite aluminum oxide hydroxide particles with lamellar structure (γ-AlO(OH)) obtained from the recycling of metallic can seals, with the addition of silver nanoparticles (Ag-NPs) reduced by Aloe Vera extract. X-ray diffractometry (XRD) confirmed the γ-phase, and scanning electron microscopy (SEM) showed the presence of Ag-NPs on the boehmite particle surface, confirming the efficiency of the synthesis to obtain the composite material. The samples were used to treat lake water, according to the Standard Methods for the Examination of Water and Wastewater. The results indicated that the elimination of total coliforms and Escherichia coli occurred, with excellent efficiency for the Ag-boehmite sample. The tests show the possibility of reuse (5×) of the sample, as it maintained the efficiency of disinfection for E. coli. The preparation, use, and reuse of boehmite obtained from metallic waste is a case of a circular economy, focused on sustainability and green chemistry.

9.
Nanomaterials (Basel) ; 12(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35630986

ABSTRACT

In this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial disinfection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in "Standard Methods for the Examination of Water and Wastewater" were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis, and disinfection efficiency.

10.
Data Brief ; 40: 107776, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35028348

ABSTRACT

This data article is associated with the work "Ecofriendly synthesis of Zn-abietate complex derived from Pinus elliottii resin and its application as an antibacterial pigment against S. aureus and E. coli". The characterization data of the Zn-abietate complex obtained from Pinus elliottii resin and their reactional intermediary (Na-abietate) are reported. The Na-abietate was prepared with purified Pinus resin and sodium hydroxide (≥ 99%) in a stoichiometric ratio of 1:1. For the Zn-abietate synthesis was used ZnSO4 and Na-abietate solutions were at mild temperature and stirring without using organic solvents to ensuring the green character of the synthesis. Spectroscopic and structural characterization was consistent with an octahedral complex involving three carboxylate ligands per metal ion. X-ray photoelectron spectroscopy (XPS) analysis of the Na-abietate salt confirms the presence of carbonyl groups, carbon-oxygen atoms simple bonds (O-C/O=C), and carboxylate groups oxygen atoms (O-C=O). Analysis of the Zn LMM Auger, for the Zn-abietate complex, indicates the presence of zinc atoms with oxidation state Zn2+, this is supported by the distance between Zn 2p3/2 and 1p1/2 in the XPS spectrum. Together, these data will be useful for the structural representation of the samples.

11.
Molecules ; 28(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36615339

ABSTRACT

The synthesis of structured MgO is reported using feedstock starch (route I), citrus pectin (route II), and Aloe vera (route III) leaf, which are suitable for use as green fuels due to their abundance, low cost, and non-toxicity. The oxides formed showed high porosity and were evaluated as antimicrobial agents. The samples were characterized by energy-dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The crystalline periclase monophase of the MgO was identified for all samples. The SEM analyses show that the sample morphology depends on the organic fuel used during the synthesis. The antibacterial activity of the MgO-St (starch), MgO-CP (citrus pectin), and MgO-Av (Aloe vera) oxides was evaluated against pathogens Staphylococcus aureus (ATCC 6538P) and Escherichia coli (ATCC 8739). Antifungal activity was also studied against Candida albicans (ATCC 64548). The studies were carried out using the qualitative agar disk diffusion method and quantitative minimum inhibitory concentration (MIC) tests. The MIC of each sample showed the same inhibitory concentration of 400 µg. mL-1 for the studied microorganisms. The formation of inhibition zones and the MIC values in the antimicrobial analysis indicate the effective antimicrobial activity of the samples against the test microorganisms.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Magnesium Oxide/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Microscopy, Electron, Scanning , Escherichia coli , Microbial Sensitivity Tests , Starch/pharmacology , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , X-Ray Diffraction
12.
Front Chem ; 8: 571790, 2020.
Article in English | MEDLINE | ID: mdl-33330360

ABSTRACT

Zinc Oxide nanoparticles have been synthesized by two simple routes using Aloe vera (green synthesis, route I) or Cassava starch (gelatinization, route II). The XRD patterns and Raman spectra show that both synthesis routes lead to single-phase ZnO. XPS results indicate the presence of zinc atoms with oxidation state Zn2+. SEM images of the ZnO nanoparticles synthesized using Cassava starch show the presence of pseudo-spherical nanoparticles and nanosheets, while just pseudo-spherical nanoparticles were observed when Aloe vera was used. The UV-Vis spectra showed a slight difference in the absorption edge of the ZnO particles obtained using Aloe vera (3.18 eV) and Cassava starch (3.24 eV). The ZnO nanoparticles were tested as adsorbents for the removal of copper in wastewater, it is shown that at low Cu2+ ion concentration (~40 mg/L) the nanoparticles synthesized by both routes have the same removal efficiency, however, increasing the absorbate concentration (> 80 mg/L) the ZnO nanoparticles synthesized using Aloe vera have a higher removal efficiency. The synthesized ZnO nanoparticles can be used as effective and environmental-friendly metal trace absorbers in wastewater.

13.
Prog Biomater ; 8(1): 1-9, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30599070

ABSTRACT

Hydroxyapatite was obtained by bone calcinations. To study the calcination process, bovine and porcine bones were first autoclaved to remove fat and other non-bone tissues. They were then heated in an alumina pan in an oxidizing atmosphere of air, where simultaneous thermal analysis curves were recorded. To prepare the hydroxyapatites, bone samples were calcined at 850 °C and 1000 °C using a muffle furnace for 1 h. The obtained materials were powdered using mortar and pestle, and sifted in a sieve (60 mesh) without any additional purification or chemical treatment. The materials obtained were characterized by energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The antimicrobial properties of these materials were determined through direct contact tests against Staphylococcus aureus. The natural hydroxyapatites obtained by bone calcination inhibited S. aureus growth, with the material obtained by calcination of bovine bones at 1000 °C, showing the best antimicrobial activity. These results indicated that bone wastes can be used to obtain hydroxyapatites with antimicrobial activity.

14.
Rev. colomb. ciencias quim. farm ; 47(3): 400-409, set.-dez. 2018. graf
Article in Portuguese | LILACS | ID: biblio-990925

ABSTRACT

RESUMO Pela primeira vez foi descrito um caso interessante de uso do oxihidróxido de vanádio trivalente (VO(OH)) como modificador de elétrodo na detecção eletroquímica de nandrolona. Foi mostrado que o oxihidróxido de vanádio pode ser um modificador eficiente para a detecção de nandrolona, mas, ao contrário da maioria dos casos de uso de oxihidróxido de cobalto, composto parecido, o processo é catódico e dá-se em meio moderadamente ácido a neutro. O comportamento oscilatório, no sistema, é possível apenas por causa das influências do processo da eletrorredução de vanádio tetravalente em trivalente na dupla camada elétrica.


SUMMARY An interesting case of the use of trivalent vanadium oxyhydroxide (VO(OH)) as an electrode modifier for nandrolone electrochemical determination has been described for the first time. It was shown that vanadium (III) oxyhydroxide may be an efficient electrode modifier for nandrolone determination, but, contrarily to the majority of the cases of the use of cobalt (III) oxyhydroxide, which is a relative compound, the process is cathodic and it is realized in moderately acid solutions, tending to neutral. The oscillatory behavior in the system is possible, due to the influence of the electrochemical reduction of tetravalent vanadium to trivalent in double electric layer.

15.
J Nanosci Nanotechnol ; 11(5): 3985-96, 2011 May.
Article in English | MEDLINE | ID: mdl-21780396

ABSTRACT

Nickel hydroxide can provide an outstanding cathode material in alkaline secondary batteries, however the progressive decrease of the charge capacity as a function of the number of oxidation/reduction cycles is a challenging problem to be solved. New improvements on the electrochemical properties of electrode materials can be achieved by exploiting the much better performance of alpha-nickel hydroxide. Such materials were obtained in a stable form by sol-gel method and characterized by thermogravimetric analyses, UV-Vis spectroscopy, X-ray diffractometry, scanning and transmission electron microscopy, cyclic voltammetry and electrochemical quartz crystal microbalance techniques. The results revealed not only the formation of the alpha-Ni(OH)2 phase, but also a much better electrochemical reversibility and stability as compared with similar materials obtained by electrochemical precipitation method.

SELECTION OF CITATIONS
SEARCH DETAIL
...