Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38947915

ABSTRACT

Background and Objective: Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of prosthetic heart valves. Methods: An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the Ansys LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29-mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via Ansys EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. Results: The simulated effective orifice areas of the commercial devices were in the range reported in the literature. The flow rates from the in vitro flow testing matched well with the in silico results. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics. Platelets experienced different magnitudes of SA along their trajectories as they flowed past each design. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk for these patients, despite being clinically defined as "mild" paravalvular leak. Conclusions: Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.

2.
Ann Biomed Eng ; 51(1): 58-70, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36042099

ABSTRACT

Bicuspid aortic valve (BAV), the most common congenital heart malformation, is characterized by the presence of only two valve leaflets with asymmetrical geometry, resulting in elliptical systolic opening. BAV often leads to early onset of calcific aortic stenosis (AS). Following the rapid expansion of transcatheter aortic valve replacement (TAVR), designed specifically for treating conventional tricuspid AS, BAV patients with AS were initially treated "off-label" with TAVR, which recently gained FDA and CE regulatory approval. Despite its increasing use in BAV, pathological BAV anatomy often leads to complications stemming from mismatched anatomical features. To mitigate these complications, a novel eccentric polymeric TAVR valve incorporating asymmetrical leaflets was designed specifically for BAV anatomies. Computational modeling was used to optimize its asymmetric leaflets for lower functional stresses and improved hemodynamic performance. Deployment and flow were simulated in patient-specific BAV models (n = 6) and compared to a current commercial TAVR valve (Evolut R 29 mm), to assess deployment and flow parameters. The novel eccentric BAV-dedicated valve demonstrated significant improvements in peak systolic orifice area, along with lower jet velocity and wall shear stress (WSS). This feasibility study demonstrates the clinical potential of the first known BAV-dedicated TAVR design, which will foster advancement of patient-dedicated valvular devices.


Subject(s)
Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Heart Valve Diseases , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve , Heart Valve Diseases/surgery , Patient-Specific Modeling , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome
3.
Cardiovasc Eng Technol ; 13(6): 840-856, 2022 12.
Article in English | MEDLINE | ID: mdl-35391657

ABSTRACT

INTRODUCTION: Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, which had been treated off-label by transcatheter aortic valve replacement (TAVR) procedure for several years, until its recent approval by the Food and Drug Administration (FDA) and Conformité Européenne (CE) to treat BAVs. Post-TAVR complications tend to get exacerbated in BAV patients due to their inherent aortic root pathologies. Globally, due to the paucity of randomized clinical trials, clinicians still favor surgical AVR as the primary treatment option for BAV patients. While this warrants longer term studies of TAVR outcomes in BAV patient cohorts, in vitro experiments and in silico computational modeling can be used to guide the surgical community in assessing the feasibility of TAVR in BAV patients. Our goal is to combine these techniques in order to create a modeling framework for optimizing pre-procedural planning and minimize post-procedural complications. MATERIALS AND METHODS: Patient-specific in silico models and 3D printed replicas of 3 BAV patients with different degrees of post-TAVR paravalvular leakage (PVL) were created. Patient-specific TAVR device deployment was modeled in silico and in vitro-following the clinical procedures performed in these patients. Computational fluid dynamics simulations and in vitro flow studies were performed in order to obtain the degrees of PVL in these models. RESULTS: PVL degree and locations were consistent with the clinical data. Cross-validation comparing the stent deformation and the flow parameters between the in silico and the in vitro models demonstrated good agreement. CONCLUSION: The current framework illustrates the potential of using simulations and 3D printed models for pre-TAVR planning and assessing post-TAVR complications in BAV patients.


Subject(s)
Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Computer Simulation , Hydrodynamics , Aortic Valve Stenosis/surgery , Treatment Outcome
4.
Artif Organs ; 46(7): 1305-1317, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35083748

ABSTRACT

BACKGROUND: Cardiac conduction abnormality (CCA)- one of the major persistent complications associated with transcatheter aortic valve replacement (TAVR) may lead to permanent pacemaker implantation. Localized stresses exerted by the device frame on the membranous septum (MS) which lies between the aortic annulus and the bundle of His, may disturb the cardiac conduction and cause the resultant CCA. We hypothesize that the area-weighted average maximum principal logarithmic strain (AMPLS) in the MS region can predict the risk of CCA following TAVR. METHODS: Rigorous finite element-based analysis was conducted in two patients (Balloon expandable TAVR recipients) to assess post-TAVR CCA risk. Following the procedure one of the patients required permanent pacemaker (PPM) implantation while the other did not (control case). Patient-specific aortic root was modeled, MS was identified from the CT image, and the TAVR deployment was simulated. Mechanical factors in the MS region such as logarithmic strain, contact force, contact pressure, contact pressure index (CPI) and their time history during the TAVR deployment; and anatomical factors such as MS length, implantation depth, were analyzed. RESULTS: Maximum AMPLS (0.47 and 0.37, respectively), contact force (0.92 N and 0.72 N, respectively), and CPI (3.99 and 2.86, respectively) in the MS region were significantly elevated in the PPM patient as compared to control patient. CONCLUSION: Elevated stresses generated by TAVR devices during deployment appear to correlate with CCA risk, with AMPLS in the MS region emerging as a strong predictor that could be used for preprocedural planning in order to minimize CCA risk.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Pacemaker, Artificial , Transcatheter Aortic Valve Replacement , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Cardiac Pacing, Artificial , Humans , Pacemaker, Artificial/adverse effects , Risk Assessment , Risk Factors , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome
5.
J Cardiovasc Transl Res ; 15(4): 834-844, 2022 08.
Article in English | MEDLINE | ID: mdl-34859367

ABSTRACT

Bicuspid aortic valve (BAV), the most common congenital valvular abnormality, generates asymmetric flow patterns and increased stresses on the leaflets that expedite valvular calcification and structural degeneration. Recently adapted for use in BAV patients, TAVR demonstrates promising performance, but post-TAVR complications tend to get exacerbated due to BAV anatomical complexities. Utilizing patient-specific computational modeling, we address some of these complications. The degree and location of post-TAVR PVL was assessed, and the risk of flow-induced thrombogenicity was analyzed in 3 BAV patients - using older generation TAVR devices that were implanted in these patients, and compared them to the performance of the newest generation TAVR devices using in silico patient models. Significant decrease in PVL and thrombogenic potential was observed after implantation of the newest generation device. The current work demonstrates the potential of using simulations in pre-procedural planning to assess post-TAVR complications, and compare the performance of different devices to achieve better clinical outcomes. Patient-specific computational framework to assess post-transcatheter bicuspid aortic valve replacement paravalvular leakage and flow-induced thrombogenic complications and compare device performances.


Subject(s)
Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Patient-Specific Modeling , Computer Simulation , Aortic Valve Stenosis/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...