Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 281(31): 21837-21847, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16754664

ABSTRACT

The activation of the Ras-related GTPase R-Ras, which has been implicated in the regulation of various cellular functions, by G protein-coupled receptors (GPCRs) was studied in HEK-293 cells stably expressing the M3 muscarinic acetylcholine receptor (mAChR), which can couple to several types of heterotrimeric G proteins. Activation of the receptor induced a very rapid and transient activation of R-Ras. Studies with inhibitors and activators of various signaling pathways indicated that R-Ras activation by the M3 mAChR is dependent on cyclic AMP formation but is independent of protein kinase A. Similar to the rather promiscuous M3 mAChR, two typical G(s)-coupled receptors also induced R-Ras activation. The receptor actions were mimicked by an Epac-specific cyclic AMP analog and suppressed by depletion of endogenous Epac1 by small interfering RNAs, as well as expression of a cyclic AMP binding-deficient Epac1 mutant, but not by expression of dominant negative Rap GTPases. In vitro studies demonstrated that Epac1 directly interacts with R-Ras and catalyzes GDP/GTP exchange at this GTPase. Finally, it is shown that the cyclic AMP- and Epac-activated R-Ras plays a major role in the M3 mAChR-mediated stimulation of phospholipase D but not phospholipase C. Collectively, our data indicate that GPCRs rapidly activate R-Ras, that R-Ras activation by the GPCRs is apparently directly induced by cyclic AMP-regulated Epac proteins, and that activated R-Ras specifically controls GPCR-mediated phospholipase D stimulation.


Subject(s)
Cyclic AMP/metabolism , GTP Phosphohydrolases/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Phospholipase D/metabolism , Receptors, G-Protein-Coupled/metabolism , ras Proteins/metabolism , Catalysis , Cell Line , Guanosine Diphosphate/metabolism , Humans , Receptor, Muscarinic M3/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...