Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 46(7): 686-706, 2020 12.
Article in English | MEDLINE | ID: mdl-32716575

ABSTRACT

BACKGROUND: Evidence suggests that amyloid ß (Aß) peptides play an important role in the degeneration of neurons during the development of Alzheimer's disease (AD), the prevalent cause of dementia affecting the elderly. The endosomal-lysosomal system, which acts as a major site for Aß metabolism, has been shown to exhibit abnormalities in vulnerable neurons of the AD brain, reflected by enhanced levels/expression of lysosomal enzymes including cathepsin D (CatD). At present, the implication of CatD in selective neuronal vulnerability in AD pathology remains unclear. METHODS: We evaluated the role of CatD in the degeneration of neurons in Aß-treated cultures, transgenic AD mouse model (that is 5xFAD) and post mortem AD brain samples. RESULTS: Our results showed that Aß1-42 -induced toxicity in cortical cultured neurons is associated with impaired lysosomal integrity, enhanced levels of carbonylated proteins and tau phosphorylation. The cellular and cytosolic levels/activity of CatD are also elevated in cultured neurons following exposure to Aß peptide. Additionally, we observed that CatD cellular and subcellular levels/activity are increased in the affected cortex, but not in the unaffected cerebellum, of 5xFAD mice and post mortem AD brains. Interestingly, treatment of cultured neurons with nanoparticles PLGA, which targets lysosomal system, attenuated Aß toxicity by reducing the levels of carbonylated proteins, tau phosphorylation and the level/distribution/activity of CatD. CONCLUSION: Our study reveals that increased cytosolic level/activity of CatD play an important role in determining neuronal vulnerability in AD. Additionally, native PLGA can protect neurons against Aß toxicity by restoring lysosomal membrane integrity, thus signifying its implication in attenuating AD.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cathepsin D/metabolism , Lysosomes/metabolism , Neurons/pathology , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Peptide Fragments/metabolism , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...