Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 14(14): 3574-3580, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37018077

ABSTRACT

To understand the crystallization mechanism of zeolites, it is important to clarify the detailed role of the structure-directing agent, which is essential for the crystallization of zeolite, interacting with an amorphous aluminosilicate matrix. In this study, to reveal the structure-directing effect, the evolution of the aluminosilicate precursor which causes the nucleation of zeolite is analyzed by the comprehensive approach including atom-selective methods. The results of total and atom-selective pair distribution function analyses and X-ray absorption spectroscopy indicate that a crystalline-like coordination environment gradually forms around Cs cations. This corresponds to the fact that Cs is located at the center of the d8r units in the RHO structure whose unit is unique in this zeolite, and a similar tendency is also confirmed in the ANA system. The results collectively support the conventional hypothesis that the formation of the crystalline-like structure before the apparent nucleation of the zeolite.

2.
Chem Commun (Camb) ; 53(50): 6796-6799, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28603795

ABSTRACT

High-silica erionite (ERI) zeolites are conventionally synthesised via a so-called charge density mismatch (CDM) approach, and a typical synthesis takes several days to complete. We herein demonstrate an ultrafast route to synthesise high-silica erionite zeolites in as short as 2 h at 210 °C. The fast-synthesised ERI has been proved to show higher hydrothermal stability compared with the conventionally synthesised product.

3.
Proc Natl Acad Sci U S A ; 113(50): 14267-14271, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911823

ABSTRACT

The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240-300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future.

4.
Sci Rep ; 6: 29210, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27378145

ABSTRACT

Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 µm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.

5.
Sci Rep ; 6: 21820, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26911660

ABSTRACT

We introduce "sense, track and separate" approach for the removal of Hg(2+) ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg(2+) ions with a high precision but also adsorb and separate a significant amount of Hg(2+) ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg(2+) ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery.


Subject(s)
Mercury/analysis , Microscopy, Fluorescence , Nanostructures/chemistry , Spectrometry, Fluorescence , Animals , Fluorescent Dyes/chemistry , Ions/chemistry , Magnetite Nanoparticles/chemistry , Metals/chemistry , Mice , NIH 3T3 Cells , Porosity , Rhodamines/chemistry , Silanes/chemistry , X-Ray Diffraction
6.
Sci Rep ; 5: 12901, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26243180

ABSTRACT

Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCN's inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis.

7.
Angew Chem Int Ed Engl ; 54(29): 8407-10, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26037244

ABSTRACT

The single-step preparation of highly ordered mesoporous silica hybrid nanocomposites with conjugated polymers was explored using a novel cationic 3,4-propylenedioxythiophene (ProDOT) surfactant (PrS). The method does not require high-temperature calcination or a washing procedure. The combination of self-assembly of the silica surfactant and in situ polymerization of the ProDOT tail is responsible for creation of the mesoporosity with ultralarge pores, large pore volume, and electroactivity. As this novel material exhibits excellent textural parameters together with electrical conductivity, we believe that this could find potential applications in various fields. This novel concept of creating mesoporosity without a calcination process is a significant breakthrough in the field of mesoporous materials and the method can be further generalized as a rational preparation of various mesoporous hybrid materials having different structures and pore diameters.

8.
Chemphyschem ; 15(16): 3440-3, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25157841

ABSTRACT

The preparation of size-controllable Fe2O3 nanoparticles grown in nanoporous carbon with tuneable pore diameters is reported. These hybrid materials exhibit strong non-linear magnetic properties and a magnetic moment of approximately 229 emu g(-1), which is the highest value ever reported for nanoporous hybrids, and can be attributed to the nanosieve effect and the strong interaction between the nanoparticles and the carbon walls.


Subject(s)
Carbon/chemistry , Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Nanopores , Magnetics , Temperature
9.
Chem Commun (Camb) ; 50(45): 5976-9, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24763940

ABSTRACT

Well-ordered meso-macroporous carbon nitride film fabricated via a simple and flexible template replication method by using the P123 block copolymer and polystyrene spheres as dual templates shows selective sensing performance for acetic acid but after treating the surface of the film with UV light and oxygen, the selectivity of sensing can be tuned for basic molecules.

11.
Chem Commun (Camb) ; 48(72): 9029-31, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22859219

ABSTRACT

A simple photo-induced approach is developed for the preparation of COOH functionalized meso-macroporous carbon films with tunable pores without using any inorganic mesoporous silica templates, which show excellent sensing selectivity for aniline and the selectivity can be enhanced upon increasing COOH functional groups.

12.
ChemSusChem ; 5(4): 700-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22389323

ABSTRACT

Highly ordered mesoporous carbon nitride (CN) with an extremely high nitrogen content and tunable pore diameters was synthesized by using a new precursor with a high nitrogen content, aminoguanidine hydrochloride and mesoporous silica SBA-15 with different pore diameters as hard templates. Surprisingly, the N/C ratio of the prepared mesoporous CN (MCN-4: 1.80) was considerably higher than that of the theoretically predicted C(3)N(4) nanostructures (1.33). This is mainly due to the fact that the CN precursor easily undergoes polymerization at high temperature and affords a highly stable polymer composed of a diamino-s-tetrazine moiety with a six-membered aromatic ring containing six nitrogen atoms that are linked trigonally with the nitrogen atoms. The obtained materials were thoroughly characterized by means of XRD, nitrogen adsorption, high resolution TEM, electron energy loss spectra, high resolution SEM, X-ray photoelectron spectroscopy, FTIR, and C, N, O, and S analysis. The results show that the MCN-4 materials possess a well-ordered mesoporous structure similar to SBA-15 with a high specific surface area and tunable band gap in the range of 2.25-2.49 eV. Interestingly, the pore diameter of the materials can be finely tuned from 3.1-5.8 nm by increasing the pore diameter of the hard-template SBA-15. The reaction temperature plays a critical role for the formation of MCN, and we found that 400 °C is the best condition to obtain MCN-4 with a high nitrogen content. We have further investigated the catalytic application of the MCN-4 materials towards Friedel-Crafts hexanoylation of benzene and compared the results with the mesoporous CN with less nitrogen content (MCN-1) and nonporous CN. Among the materials studied, MCN-4 showed the highest activity, affording a high yield of hexanophenone within a few hours, which is mainly due to the presence of free amine groups on the wall structure of MCN-4.


Subject(s)
Chemistry Techniques, Synthetic/methods , Guanidines/chemistry , Nitriles/chemistry , Nitrogen/chemistry , Acylation , Benzene/chemistry , Porosity
14.
Chem Asian J ; 6(3): 834-41, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21344658

ABSTRACT

Here, we report the results of our detailed study on the fabrication of iron oxide magnetic nanoparticles confined in mesoporous silica KIT-6 with a 3D structure and large, tunable pore diameters. It was confirmed by XRD, nitrogen adsorption, high-resolution (HR) TEM, and magnetic measurements that highly dispersed iron oxide nanoparticles are occupied inside the mesochannels of KIT-6. We also demonstrated that the size of the iron oxide nanoparticle can be controlled by simply changing the pore diameter of the KIT-6 and the weight percentage of the iron oxide nanoparticles. The effect of the weight percentage and size of the iron oxide nanoparticles, and the textural parameters of the support on the magnetic properties of iron oxide/KIT-6 has been demonstrated. The magnetization increases with decreasing iron content in the pore channels of KIT-6, whereas coercivity decreases for the same samples. Among the KIT-6 materials studied, KIT-6 with 7.5 wt % of iron showed the highest saturation magnetic moment and magnetic remanence. However, all the samples register a coercivity of around 2000 Oe, which is generally observed for the hard magnetic materials. In addition, we have found a paramagnetic-to-superparamagnetic transition at low temperature for samples with different iron content at low temperature. The cause for this exciting transition is also discussed in detail. Magnetic properties of the iron oxide loaded KIT-6 were also compared with pure iron oxide and iron oxide loaded over SBA-15. It was found that iron oxide loaded KIT-6 showed the highest magnetization due to its 3D structure and large pore volume. The pore diameter of the iron oxide loaded KIT-6 support also plays a critical role in controlling the magnetization and the blocking temperature, which has a direct relation to the particle diameter and increases from 48 to 63 K with an increase in the pore diameter of the support from 8 to 11.3 nm.

15.
J Nanosci Nanotechnol ; 10(12): 8124-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21121305

ABSTRACT

Mesoporous TiO2 powder materials with a high crystallinity have been prepared by evaporation induced self assembly (EISA) process using titanium tetraisopropoxide (TTIP) and pluronic P123 surfactant (EO20PO70EO20) as titanium source and structure-directing reagent, respectively. The prepared materials were characterized by low and wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical absorption, and N2 adsorption-desorption experiments. The crystallinity of the materials was controlled by varying the calcination temperature. The resulting TiO2 materials showed highly crystalline structure with uniform particle size which increases from 11.8 to 23.8 nm with increasing the calcination temperature from 400 to 600 degrees C, respectively, whereas the specific surface area decreases from 125 to 40 m2/g. TEM and XRD results revealed that the calcination temperature of 600 degrees C is the best condition to obtain highly crystalline mesoporous TiO2. The photocatalytic activity of the TiO2 mesoporous materials with different crystallinity and textural parameters has been studied in the decomposition of methylene blue (MB) dye molecules under visible light irradiation. Among the mesoporous TiO2 materials studied, the material with the highest crystallinity, prepared at 600 degrees C, showed the best photocatalytic performance in the decomposition of MB under visible light in a short time.

16.
J Nanosci Nanotechnol ; 10(12): 8362-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21121340

ABSTRACT

Mesoporous SnO2 was prepared by a high temperature microwave assisted process using a low cost polymeric surfactant, poly(ethylene glycol). The obtained material has been characterized by several sophisticated techniques such as XRD, nitrogen adsorption, HRTEM, UV-Vis DRS, HRSEM and photoluminescence. The characterization results reveal that the obtained material exhibits a high surface area with a spherical morphology, crystalline walls and narrow mesopores. In addition, microwave process requires only a short time for the formation of mesoporous SnO2. SnO2 with no porous structure was obtained when hydrothermal technique was used. We also found that the band gap of the mesoporous SnO2 is much smaller than that of the nonporous bulk SnO2 and showed excellent photoluminescent properties.

17.
J Nanosci Nanotechnol ; 10(1): 329-35, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20352856

ABSTRACT

Here we demonstrate for the first time the fabrication hexagonally ordered mesoporous carbon materials with different morphology and pore diameters using NbSBA-15 mesoporous silica template with different niobium content. The materials were characterized by several characterization techniques such as XRD, HRSEM, HRTEM, elemental mapping, ICP-AES, and EDS analysis. We also demonstrate that the morphology of the materials can be controlled by simply tuning the morphology of the parent NbSBA-15 template, whose morphology can be tuned by adjusting the loading of niobium in the framework wall structure of SBA-15. Nitrogen adsorption results reveal that the textural parameters of the mesoporous carbon materials prepared from NbSBA-15 are much better than those prepared with pristine SBA-15 template, and vary with the amount niobium present in the template. It was also found that the pore diameter of the NbMC-X increases with decreasing the amount of niobium in the framework wall structure of the template. The morphology and the topology of the materials were observed by HRSEM and HRTEM, respectively. The materials with rod and semi-spherical or winding road like morphology can be obtained using NbSBA-15 materials with different Nb content. It was found that the usage of NbSBA-15 as templates for the fabrication of mesoporous carbon materials can also allow us to decorate the pore channels of the materials with either niobium oxide or niobium silicate nanoparticles which are expected to show high performance when used in redox catalysis, and the biomolecule adsorption as the niobium has the strong tendency to adsorb the protein molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...