Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
ACS Appl Mater Interfaces ; 7(1): 810-22, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25490530

ABSTRACT

Development of unique nanoheterostructures consisting of indium oxide nanoclusters like species doped on the TiO2 nanocrystals surfaces with {101} and {001} exposed facets, resulted in unprecedented sacrificial hydrogen production (5.3 mmol h(-1) g(-1)) from water using methanol as a sacrificial agent, under visible light LED source and AM 1.5G solar simulator (10.3 mmol h(-1) g(-1)), which is the highest H2 production rate ever reported for titania based photocatalysts, without using any noble metal cocatalyst. X-ray photoelectron spectroscopy (XPS) analysis of the nanostructures reveals the presence of Ti-O-In and In-O-In like species on the surface of nanostructures. Electron energy-loss spectroscopy (EELS) elemental mapping and EDX spectroscopy techniques combined with transmission electron microscope evidenced the existence of nanoheterostructures. XPS, EELS, EDX, and HAADF-STEM tools collectively suggest the presence of indium oxide nanoclusters like species on the surface of TiO2 nanostructures. These indium oxide nanocluster doped TiO2 (In2O3/T{001}) single crystals with {101} and {001} exposed facets exhibited 1.3 times higher visible light photocatalytic H2 production than indium oxide nanocluster doped TiO2 nanocrystals with only {101}facets (In2O3/T{101}) exposed. The remarkable photocatalytic activity of the obtained nanoheterostructures is attributed to the combined synergetic effect of indium oxide nanoclusters interacting with the titania surface, enhanced visible light response, high crystallinity, and unique structural features.

4.
Bioresour Technol ; 126: 148-55, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23073102

ABSTRACT

Kinetic studies and product profiling was done to understand the anomalous cracking of jathropha oil triglycerides in the presence of sulfided Co-Mo/Al(2)O(3) catalyst. At temperatures between 320 and 340 °C, only deoxygenation and oligomerization reactions took place whereas at temperatures above 340 °C, internal conversions between the products and direct conversion to lighter and middle distillates were favored High pressures (80 bar) and H(2)/feed ratios (>1500) were necessary to minimize oligomerization of the products and to increase the lifespan of the catalyst. Lumped kinetic models were validated with experimental results. Activation energies for the formation of lighter (83 kJ/mol) and middle fractions (126 kJ/mol) were higher than those for the heavy (47 kJ/mol) and deoxygenated (47 kJ/mol) products. Jatropha oil triglycerides hydroconversion pathways were dependent on temperature and the triglycerides could be hydrocracked to lower range hydrocarbons (C5-C14) by increasing the reaction temperatures.


Subject(s)
Chemistry, Organic/methods , Cobalt/chemistry , Hydrogen/chemistry , Molybdenum/chemistry , Sulfides/chemistry , Temperature , Triglycerides/chemistry , Catalysis , Kinetics , Models, Chemical , Pressure , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...