Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 4337, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288601

ABSTRACT

Cardiac myosin binding protein-C (cMyBP-C) is an important regulator of sarcomeric function. Reduced phosphorylation of cMyBP-C has been linked to compromised contractility in heart failure patients. Here, we used previously published cMyBP-C peptides 302A and 302S, surrogates of the regulatory phosphorylation site serine 302, as a tool to determine the effects of modulating the dephosphorylation state of cMyBP-C on cardiac contraction and relaxation in experimental heart failure (HF) models in vitro. Both peptides increased the contractility of papillary muscle fibers isolated from a mouse model expressing cMyBP-C phospho-ablation (cMyBP-CAAA) constitutively. Peptide 302A, in particular, could also improve the force redevelopment rate (ktr) in papillary muscle fibers from cMyBP-CAAA (nonphosphorylated alanines) mice. Consistent with the above findings, both peptides increased ATPase rates in myofibrils isolated from rats with myocardial infarction (MI), but not from sham rats. Furthermore, in the cMyBP-CAAA mouse model, both peptides improved ATPase hydrolysis rates. These changes were not observed in non-transgenic (NTG) mice or sham rats, indicating the specific effects of these peptides in regulating the dephosphorylation state of cMyBP-C under the pathological conditions of HF. Taken together, these studies demonstrate that modulation of cMyBP-C dephosphorylation state can be a therapeutic approach to improve myosin function, sarcomere contractility and relaxation after an adverse cardiac event. Therefore, targeting cMyBP-C could potentially improve overall cardiac performance as a complement to standard-care drugs in HF patients.


Subject(s)
Heart Failure , Myocardium , Animals , Cardiac Myosins/metabolism , Carrier Proteins/metabolism , Cytoskeletal Proteins/metabolism , Humans , Mice , Myocardial Contraction/physiology , Myocardium/metabolism , Myosins/metabolism , Peptides/metabolism , Phosphorylation/physiology , Rats
2.
Sci Transl Med ; 9(390)2017 05 17.
Article in English | MEDLINE | ID: mdl-28515341

ABSTRACT

Despite current standard of care, the average 5-year mortality after an initial diagnosis of heart failure (HF) is about 40%, reflecting an urgent need for new therapeutic approaches. Previous studies demonstrated that the epigenetic reader protein bromodomain-containing protein 4 (BRD4), an emerging therapeutic target in cancer, functions as a critical coactivator of pathologic gene transactivation during cardiomyocyte hypertrophy. However, the therapeutic relevance of these findings to human disease remained unknown. We demonstrate that treatment with the BET bromodomain inhibitor JQ1 has therapeutic effects during severe, preestablished HF from prolonged pressure overload, as well as after a massive anterior myocardial infarction in mice. Furthermore, JQ1 potently blocks agonist-induced hypertrophy in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Integrated transcriptomic analyses across animal models and human iPSC-CMs reveal that BET inhibition preferentially blocks transactivation of a common pathologic gene regulatory program that is robustly enriched for NFκB and TGF-ß signaling networks, typified by innate inflammatory and profibrotic myocardial genes. As predicted by these specific transcriptional mechanisms, we found that JQ1 does not suppress physiological cardiac hypertrophy in a mouse swimming model. These findings establish that pharmacologically targeting innate inflammatory and profibrotic myocardial signaling networks at the level of chromatin is effective in animal models and human cardiomyocytes, providing the critical rationale for further development of BET inhibitors and other epigenomic medicines for HF.


Subject(s)
Cardiomegaly/metabolism , Heart Failure/metabolism , Inflammation/metabolism , Proteins/metabolism , Animals , Azepines/therapeutic use , Cardiomegaly/drug therapy , Cardiomegaly/genetics , Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology , Heart Failure/drug therapy , Heart Failure/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/genetics , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Proteins/genetics , Signal Transduction , Transforming Growth Factor beta/metabolism , Triazoles/therapeutic use
3.
Cell Rep ; 16(5): 1366-1378, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27425608

ABSTRACT

BRD4 governs pathological cardiac gene expression by binding acetylated chromatin, resulting in enhanced RNA polymerase II (Pol II) phosphorylation and transcription elongation. Here, we describe a signal-dependent mechanism for the regulation of BRD4 in cardiomyocytes. BRD4 expression is suppressed by microRNA-9 (miR-9), which targets the 3' UTR of the Brd4 transcript. In response to stress stimuli, miR-9 is downregulated, leading to derepression of BRD4 and enrichment of BRD4 at long-range super-enhancers (SEs) associated with pathological cardiac genes. A miR-9 mimic represses stimulus-dependent targeting of BRD4 to SEs and blunts Pol II phosphorylation at proximal transcription start sites, without affecting BRD4 binding to SEs that control constitutively expressed cardiac genes. These findings suggest that dynamic enrichment of BRD4 at SEs genome-wide serves a crucial role in the control of stress-induced cardiac gene expression and define a miR-dependent signaling mechanism for the regulation of chromatin state and Pol II phosphorylation.


Subject(s)
MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , 3' Untranslated Regions/genetics , Acetylation , Animals , Cell Cycle Proteins , Chromatin/metabolism , Down-Regulation/physiology , Humans , Mice , Phosphorylation/physiology , RNA Polymerase II/metabolism , Rats , Signal Transduction/physiology , Transcription Elongation, Genetic/physiology , Transcription Initiation Site/physiology
4.
Proc Natl Acad Sci U S A ; 112(49): E6780-9, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26598680

ABSTRACT

Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.


Subject(s)
Glucocorticoids/pharmacology , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Animals , Female , Glucocorticoids/therapeutic use , Humans , Kruppel-Like Transcription Factors/physiology , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiopathology , Nuclear Proteins/physiology , Receptors, Glucocorticoid/physiology
5.
J Biol Chem ; 289(9): 5914-24, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24407292

ABSTRACT

The mammalian heart, the body's largest energy consumer, has evolved robust mechanisms to tightly couple fuel supply with energy demand across a wide range of physiologic and pathophysiologic states, yet, when compared with other organs, relatively little is known about the molecular machinery that directly governs metabolic plasticity in the heart. Although previous studies have defined Kruppel-like factor 15 (KLF15) as a transcriptional repressor of pathologic cardiac hypertrophy, a direct role for the KLF family in cardiac metabolism has not been previously established. We show in human heart samples that KLF15 is induced after birth and reduced in heart failure, a myocardial expression pattern that parallels reliance on lipid oxidation. Isolated working heart studies and unbiased transcriptomic profiling in Klf15-deficient hearts demonstrate that KLF15 is an essential regulator of lipid flux and metabolic homeostasis in the adult myocardium. An important mechanism by which KLF15 regulates its direct transcriptional targets is via interaction with p300 and recruitment of this critical co-activator to promoters. This study establishes KLF15 as a key regulator of myocardial lipid utilization and is the first to implicate the KLF transcription factor family in cardiac metabolism.


Subject(s)
DNA-Binding Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Lipid Metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cell Line , DNA-Binding Proteins/genetics , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Knockout , Muscle Proteins/genetics , Myocardium/pathology , Nuclear Proteins/genetics , Oxidation-Reduction , Transcription Factors/genetics
6.
Cell ; 154(3): 569-82, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23911322

ABSTRACT

Heart failure (HF) is driven by the interplay between regulatory transcription factors and dynamic alterations in chromatin structure. Pathologic gene transactivation in HF is associated with recruitment of histone acetyl-transferases and local chromatin hyperacetylation. We therefore assessed the role of acetyl-lysine reader proteins, or bromodomains, in HF. Using a chemical genetic approach, we establish a central role for BET family bromodomain proteins in gene control during HF pathogenesis. BET inhibition potently suppresses cardiomyocyte hypertrophy in vitro and pathologic cardiac remodeling in vivo. Integrative transcriptional and epigenomic analyses reveal that BET proteins function mechanistically as pause-release factors critical to expression of genes that are central to HF pathogenesis and relevant to the pathobiology of failing human hearts. This study implicates epigenetic readers as essential effectors of transcriptional pause release during HF pathogenesis and identifies BET coactivator proteins as therapeutic targets in the heart.


Subject(s)
Heart Failure/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Chromatin , Disease Models, Animal , Epigenesis, Genetic , Heart , Heart Failure/drug therapy , Heart Failure/genetics , Humans , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Protein Structure, Tertiary , Rats , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Transcriptome
7.
Proc Natl Acad Sci U S A ; 109(17): 6739-44, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22493257

ABSTRACT

The ability of skeletal muscle to enhance lipid utilization during exercise is a form of metabolic plasticity essential for survival. Conversely, metabolic inflexibility in muscle can cause organ dysfunction and disease. Although the transcription factor Kruppel-like factor 15 (KLF15) is an important regulator of glucose and amino acid metabolism, its endogenous role in lipid homeostasis and muscle physiology is unknown. Here we demonstrate that KLF15 is essential for skeletal muscle lipid utilization and physiologic performance. KLF15 directly regulates a broad transcriptional program spanning all major segments of the lipid-flux pathway in muscle. Consequently, Klf15-deficient mice have abnormal lipid and energy flux, excessive reliance on carbohydrate fuels, exaggerated muscle fatigue, and impaired endurance exercise capacity. Elucidation of this heretofore unrecognized role for KLF15 now implicates this factor as a central component of the transcriptional circuitry that coordinates physiologic flux of all three basic cellular nutrients: glucose, amino acids, and lipids.


Subject(s)
Exercise , Kruppel-Like Transcription Factors/physiology , Lipid Metabolism , Muscle, Skeletal/metabolism , Nuclear Proteins/physiology , Amino Acids/metabolism , Glucose/metabolism , Homeostasis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...