Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(56): 118693-118705, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917261

ABSTRACT

The possible adverse effects of engineered iron oxide nanoparticles, especially magnetite (Fe3O4 NP), on human health and the environment, have raised concerns about their transport and behavior in soil and water systems. Accumulating these NPs in the environment can substantially affect soil and water quality and the well-being of aquatic and terrestrial organisms. Therefore, it is essential to examine the factors that affect Fe3O4 NP transportation and behavior in soil and water systems to determine their possible environmental fate. In this work, experiments were conducted in aqueous and porous media using an environmentally relevant range of pH (5, 7, 9), ionic strength (IS) (10, 50, 100 mM), and humic acid (HA) (0.1, 1, 10 mg L-1) concentrations. Fe3O4 NPs exhibited severe colloidal instability at pH 7 (⁓ = pHPZC) and showed an improvement in apparent colloidal stability at pH 5 and 9 in aquatic and terrestrial environments. HA in the background solutions promoted the overall transport of Fe3O4 NPs by enhancing the colloidal stability. The increased ionic strength in aqueous media hindered the transport by electron double-layer compression and electrostatic repulsion; however, in porous media, the transport was hindered by ionic compression. Furthermore, the transport behavior of Fe3O4 NPs was investigated in different natural waters such as rivers, lakes, taps, and groundwater. The interaction energy pattern in aquatic systems was estimated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This study showed the effects of various physical-chemical conditions on Fe3O4 NP transport in aqueous and porous (sand) media.


Subject(s)
Nanoparticles , Humans , Porosity , Nanoparticles/chemistry , Soil , Humic Substances/analysis , Sand , Solutions
2.
Article in English | MEDLINE | ID: mdl-37591457

ABSTRACT

Metal oxide nanoparticles (NPs) are considered among the most prevalent engineered nanomaterials. To have a deeper understanding of the mode of action of multiple metal oxide nanoparticles in mixtures, we have used a unicellular freshwater microalga Scenedesmus obliquus as a model organism. The toxicity of silicon dioxide (SiO2), iron oxide (Fe3O4), and zinc oxide (ZnO) NPs was studied individually as well as in their binary (SiO2 + Fe3O4, Fe3O4 + ZnO, and ZnO + SiO2) and ternary (SiO2 + Fe3O4 + ZnO) combinations. The effects of metal ions from ZnO and Fe3O4 were investigated as well. The results observed from the study, showed that a significant amount of toxicity was contributed by the dissolved ions in the mixtures of the nanoparticles. Decreases in the cell viability, ROS generation, lipid peroxidation, antioxidant enzyme activity, and photosynthetic efficiency were analyzed. Among all the individual particles, ZnO NPs showed the maximum effects and increased the toxicities of the binary mixtures. The binary and ternary mixtures of the NPs clearly showed increased toxic effects in comparison with the individual entities. However, the ternary combination had lesser toxic effects than the binary combination of Fe3O4 + ZnO. The decline in cell viability and photosynthetic efficiency were strongly correlated with various oxidative stress biomarkers emphasizing the crucial role of reactive oxygen species in inducing the toxic effects. The findings from this study highlight the importance of evaluating the combinatorial effects of various metal oxide NPs as part of a comprehensive ecotoxicity assessment in freshwater microalgae.


Subject(s)
Metal Nanoparticles , Microalgae , Scenedesmus , Zinc Oxide , Zinc Oxide/toxicity , Silicon Dioxide/toxicity , Oxides , Metal Nanoparticles/toxicity , Antioxidants , Fresh Water , Ions
3.
Environ Sci Pollut Res Int ; 30(27): 70246-70259, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37145361

ABSTRACT

Due to their remarkable properties, the applications of carbon-based nanomaterials (CNMs) such as graphene and functionalized multi-walled carbon nanotubes (f-MWCNTs) are increasing. These CNMs can enter the freshwater environment via numerous routes, potentially exposing various organisms. The current study assesses the effects of graphene, f-MWCNTs, and their binary mixture on the freshwater algal species Scenedesmus obliquus. The concentration for the individual materials was kept at 1 mg L-1, while graphene and f-MWCNTs were taken at 0.5 mg L-1 each for the combination. Both the CNMs caused a decrease in cell viability, esterase activity, and photosynthetic efficiency in the cells. The cytotoxic effects were accompanied by increased hydroxyl and superoxide radical generation, lipid peroxidation, antioxidant enzyme activity (catalase and superoxide dismutase), and mitochondrial membrane potential. Graphene was more toxic compared to f-MWCNTs. The binary mixture of the pollutants demonstrated a synergistic enhancement of the toxic potential. Oxidative stress generation played a critical role in toxicity responses, as noted by a strong correlation between the physiological parameters and the biomarkers of oxidative stress. The outcomes from this study emphasize the significance of considering the combined effects of various CNMs as part of a thorough evaluation of ecotoxicity in freshwater organisms.


Subject(s)
Graphite , Microalgae , Nanotubes, Carbon , Scenedesmus , Water Pollutants, Chemical , Graphite/toxicity , Microalgae/metabolism , Scenedesmus/metabolism , Nanotubes, Carbon/toxicity , Oxidative Stress , Antioxidants/metabolism , Fresh Water , Water Pollutants, Chemical/toxicity
4.
Arch Microbiol ; 204(7): 447, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778571

ABSTRACT

2,4,6-trinitrotoluene (TNT), a nitro-aromatic explosive commonly used for defense and several non-violent applications is contributing to serious environmental pollution problems including human health. The current study investigated the remediation potential of a native soil isolate, i.e., Indiicoccus explosivorum (strain S5-TSA-19) isolated from collected samples of an explosive manufacturing site, against TNT. The survivability of I. explosivorum against explosives is indirectly justified through its isolation; thus, it is being chosen for further study. At a TNT concentration of 120 mg/L within an optimized environment (i.e., at 30 °C and 120 rpm), the isolate was continually incubated for 30 days in a minimal salt medium (MSM). The proliferation of the isolate and the concentration of TNT, nitrate, nitrite, and ammonium ion were evaluated at a particular time during the experiment. Within 168 h (i.e., 7 days) of incubation, I. explosivorum co-metabolically degraded 100% TNT. The biodegradation procedure succeeded the first-order kinetics mechanism. Formations of additional metabolites like 2,4-dinitrotoluene (DNT), 2,4-diamino-6-nitrotoluene (2-DANT), and 2-amino-4,6-dinitrotoluene (2-ADNT), were also witnessed. TNT seems to be non-toxic for the isolate, as it reproduced admirably in TNT presence. To date, it is the first report of Indiicoccus explosivorum, efficiently bio-remediating TNT, i.e., a nitro-aromatic compound via different degradation pathways, leading to the production of simpler as well as less harmful end products. Further, at the field-scale application, Indiicoccus explosivorum may be explored for the bioremediation of TNT (i.e., a nitro-aromatic compound)-contaminated effluents.


Subject(s)
Planococcaceae , Trinitrotoluene , Humans , Biodegradation, Environmental , Kinetics
5.
J Contam Hydrol ; 248: 104029, 2022 06.
Article in English | MEDLINE | ID: mdl-35653834

ABSTRACT

Nano silica (nSiO2), induces potential harmful effects on the living environment and human health. It is well established that SiO2 facilitates the co-transport of a variety of other contaminants, including heavy metals and pesticides. The current study focused on the systematic evaluation of the effects of multiple physicochemical parameters such as pH (5, 7, and 9), ionic strength (10, 50, and 100 mM), and humic acid (0.1, 1, and 10 mg/L) on the transport and retention of nSiO2 in saturated porous medium. Additionally, the influent concentration of nSiO2 (10, 50, and 100 mg/L) was also varied. Our experimental findings indicate that the size of nSiO2 aggregates was directly related to the pH, ionic strength, HA, and particle concentration had a significant impact on the breakthrough curves (BTCs). The stability provided by the varying concentrations of pH and humic acid had a significant effect on the size of nSiO2 aggregates and transport (C/C0 > 0.7). The presence of a greater magnitude of negative charge on the surface of both nSiO2 and quartz sand resulted in less aggregation and enhanced flow of nSiO2 through the sand column. The Electrostatic and steric repulsion forces were the primary governing mechanisms in relation to the size of nSiO2 aggregates, affecting the single-collector efficiency and attachment efficiency, which determined the maximal transport of nSiO2. Conversely, a probable increase in Van der Waals force of attraction exacerbated the particle deposition and reduced their mobility for high ionic strength, and particle concentrations (C/C0 < 0.1). The formation of large nSiO2 aggregates, in particular, was principally responsible for the enhancement of nSiO2 retention in sand columns over a broad range of IS and particle concentration. The interaction energy profiles based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were determined to understand the mechanism of nSiO2 deposition. Aditionally, all the experimental BTCs were mathematically simulated and justified by the colloidal filtration theory (CFT). Considering the environmental ramifications, the transport behavior of nSiO2 was further evaluated in various natural matrices such as river, lake, ground, and tap water. The nSiO2 suspended in the river, lake, and tap water had significantly higher mobility (C/C0 > 0.7), whereas groundwater indicated higher retention (C/C0 < 0.3). The study advances our collective knowledge of physicochemical and environmental parameters that can affect particle mobility.


Subject(s)
Nanoparticles , Silicon Dioxide , Humans , Humic Substances , Hydrogen-Ion Concentration , Osmolar Concentration , Porosity , Sand , Water
6.
Environ Sci Process Impacts ; 24(5): 675-688, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35388853

ABSTRACT

Silicon dioxide nanoparticles (nSiO2) are extensively used in diverse fields and are inevitably released into the natural environment. Their overall aggregation behaviour in the environmental matrix can determine their fate and ecotoxicological effect on terrestrial and aquatic life. The current study systematically evaluates multiple parameters that can influence the stability of colloidal nSiO2 (47 nm) in the natural aquatic environment. At first, the influence of several hydrochemical parameters such as pH (5, 7, and 9), ionic strength (IS) (10, 50, and 100 mM), and humic acid (HA) (0.1, 1, and 10 mg L-1) was examined to understand the overall aggregation process of nSiO2. Furthermore, the synergistic and antagonistic effects of ionic strength and humic acid on the transport of nSiO2 in the aqueous environment were examined. Our experimental findings indicate that pH, ionic strength, and humic acid all had a profound influence on the sedimentation process of nSiO2. The experimental observations were corroborated by calculating the DLVO interaction energy profile, which was shown to be congruent with the transport patterns. The present study also highlights the influence of high and low shear forces on the sedimentation process of nSiO2 in the aqueous medium. The presence of shear force altered the collision efficiency and other interactive forces between the nanoparticles in the colloidal suspension. Under the experimental stirring conditions, a higher abundance of dispersed nSiO2 in the upper layer of the aqueous medium was noted. Additionally, the transport behaviour of nSiO2 was studied in a variety of natural water systems, including rivers, lakes, ground, and tap water. The study significantly contributes to our understanding of the different physical, chemical, and environmental aspects that can critically impact the sedimentation and spatial distribution of nSiO2 in static and dynamic aquatic ecosystems.


Subject(s)
Humic Substances , Nanoparticles , Ecosystem , Humic Substances/analysis , Kinetics , Silicon Dioxide , Water
7.
Environ Technol ; 43(7): 1003-1012, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32811372

ABSTRACT

Biodegradation ability of a native bacterial species Pelomonas aquatica strain WS2-R2A-65, isolated from nitramine explosive-contaminated effluent, for octogen (HMX) and hexogen (RDX) under aerobic condition has been explored in this study. Scanning electron microscopy indicated that the isolate WS2-R2A-65 retained its morphology both in the presence and absence of HMX or RDX. During an incubation period of 20 days, the isolate cometabolically degraded 78 and 86% of HMX and RDX with initial concentrations 6 and 60 mg L-1, respectively. The degradation mechanism followed the first-order kinetics for both the nitramines with a 50% degradation time of 9.9 and 7.7 days for HMX and RDX, respectively. Positive electrospray ionisation mass spectroscopy indicates that biodegradation of nitamines follows multiple degradation pathways with one involving ring cleavage via single-electron transfer to nitramines leading to the elimination of single nitrite ion as evident from the formation of methylenedinitramine (MEDINA) and its methyl derivatives. The other pathways involve the reduction of both the nitramines to their nitroso, hydroxylamino and amino derivatives. These metabolites get further ring cleaved to give secondary metabolites viz. N-hydroxymethylmethylenedintramine, N-nitrosoamino and hydrazinyl derivatives leading to simpler less hazardous end products. Thus, the isolate WS2-R2A-65 proves to be an efficient microbial species for bioremediation of nitramines-contaminated effluent.


Subject(s)
Comamonadaceae , Triazines , Azocines , Biodegradation, Environmental , Comamonadaceae/metabolism , Triazines/chemistry
8.
Environ Monit Assess ; 193(2): 80, 2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33486600

ABSTRACT

2,4,6-trinitrotoluene or TNT, a commonly used explosive, can pollute soil and groundwater. Conventional remediation practices for the TNT-contaminated sites are neither eco-friendly nor cost-effective. However, exploring bacteria to biodegrade TNT into environment-friendly compound(s) is an interesting area to explore. In this study, an indigenous bacterium, Pseudarthrobacter chlorophenolicus, strain S5-TSA-26, isolated from explosive contaminated soil, was investigated for potential aerobic degradation of TNT for the first time. The isolated strain of P. chlorophenolicus was incubated in a minimal salt medium (MSM) containing 120 mg/L TNT for 25 days at specified conditions. TNT degradation pattern by the bacterium was monitored at regular interval using UV-Vis spectrophotometry, high-performance liquid chromatography, and liquid chromatography mass spectrophotometric, by estimating nitrate, nitrite, and ammonium ion concentration and other metabolites such as 2,4-dinitrotoluene (DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), and 2,4-diamino-6-nitrotoluene (2-DANT). It was observed that, in the presence of TNT, there was no reduction in growth of the bacterium although it multiplied well in the presence of TNT along with no considerable morphological changes. Furthermore, it was found that TNT degraded completely within 15 days of incubation. Thus, from this study, it may be concluded that the bacterium has the potential for degrading TNT completely with the production of non-toxic by-products and might be an important bacterium for treating TNT (i.e., a nitro-aromatic compound)-contaminated sites.


Subject(s)
Explosive Agents , Micrococcaceae , Trinitrotoluene , Biodegradation, Environmental , Environmental Monitoring
9.
Environ Chall (Amst) ; 5: 100276, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38620736

ABSTRACT

The ongoing Pandemic of COVID-19 caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has severely stressed the worldwide healthcare system and has created dangerous shortages of personal protective equipment (PPE) including N95 filtering facepiece respirators (FFRs). Even though suppliers struggled to meet global demand for N95 masks at an unprecedented level, a shortage of FFR appears as a significant factor in the transmission of the disease to frontline workers. CDC, USA has mentioned that FFR decontamination and reuse may be necessary during times of shortage to ensure guaranteed availability. Hence present stressed condition faced by the healthcare sector seeks for an affordable decontamination strategy that can be replicated easily broadening the utility of FFR decontamination across a range of healthcare settings. After reviewing available literature on the various disinfection techniques that may be used for the decontamination of FFRs, a first of its kind, portable Hybrid Decontamination System/procedure has been conceptualized and designed. This system combines the disinfecting properties of both vaporous hydrogen peroxide (VHP) and ultra-violet C irradiation (UV C) to ensure maximum decontamination of N95 respirators. The instrument will be equipped with a hydrogen peroxide chamber and UV light source. Sterilization of the FFRs will be done through treatment with VHP followed by UV light treatment. The proposed system will allow the user to completely sterilize the FFRs in a time-efficient manner.

10.
3 Biotech ; 8(11): 455, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30370196

ABSTRACT

In this report, aerobic biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine or high melting explosive (HMX), a highly explosive chemical by Planomicrobium flavidum strain S5-TSA-19, an isolate from an explosive-contaminated soil, was investigated. The isolate S5-TSA-19 degraded 70% of HMX in 20 days during which time nitrite ion was produced with the subsequent formation of metabolites, viz. methylenedintramine and N-methyl-N,N'-dinitromethanediamine with molecular weights 136 Da and 149 Da, respectively. The degradation mechanism was found to follow first-order kinetics with a half-life of 11.55 days and formation of above intermediates indicate single nitrite elimination pathway. The proliferation of isolate S5-TSA-19 in the absence of nitramines indicates the cometabolic degradation of HMX. Isolate S5-TSA-19 can thus be used as futuristic microbe for degradation of HMX at explosive-contaminated site.

11.
J Med Chem ; 57(5): 1914-31, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24195700

ABSTRACT

In the past few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAAs). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. In continuation of our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic headgroups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109), which was selected for advancement to clinical development.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Quinolines/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Dogs , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Hepacivirus/enzymology , Humans , Models, Molecular , Quinolines/chemistry , Quinolines/pharmacokinetics , Rats , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
12.
Int J Pharm ; 438(1-2): 53-60, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22974525

ABSTRACT

A novel method was developed to manufacture amorphous formulations of poorly soluble compounds that cannot be processed with existing methods such as spray drying and melt extrusion. The manufacturing process and the characterization of the resulting amorphous dispersion are presented via examples of two research compounds. The novel process is utilized N,N-dimethylacetamide (DMA) to dissolve the drug and the selected ionic polymer. This solution is then co-precipitated into aqueous medium. The solvent is extracted out by washing and the co-precipitated material is isolated by filtration followed by drying. The dried material is referred to as microprecipitated bulk powder (MBP). The amorphous form prepared using this method not only provides excellent in vitro and in vivo performance but also showed excellent stability. The stabilization of amorphous dispersion is attributed to the high T(g), ionic nature of the polymer that help to stabilize the amorphous form by possible ionic interactions, and/or due to the insolubility of polymer in water. In addition to being an alternate technology for amorphous formulation of difficult compounds, MBP technology provides advantages with respect to stability, density and downstream processing.


Subject(s)
Drug Compounding/methods , Powders/chemistry , Acetamides/chemistry , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Dogs , Pharmaceutical Preparations/chemistry , Polymers/chemistry , Powders/pharmacokinetics , Rats , Solubility
13.
J Environ Biol ; 30(4): 527-31, 2009 Jul.
Article in English | MEDLINE | ID: mdl-20120491

ABSTRACT

The protective effects of Curcuma aromatica leaf extract were studied on nehrotoxicity induced by arsenic trioxide in albino rats. LD50 estimated for arsenic trioxide was 14.98 mg kg(-1) body weight. Nephrotoxicity was assessed by estimating the serum levels of urea, uric acid and creatinine, the markers of renal dysfunctioning. The applied doses of arsenic trioxide administered orally were 0.007, 0.01, 0.02 and 0.15 mg 100 g(-1) body weight for sub acute (21,14 and 7 days) and acute (1 day) treatments respectively. Arsenic trioxide intoxication significantly increased the serum level of urea, uric acid and creatinine in comparison to control due to renal dysfunctioning. Pretreatment with dose of 50 mg kg(-1) body weight of leaf extract of Curcuma aromatica restored the increased serum levels of urea, uric acid and creatinine to normal. The results reveal that Curcuma aromatica leaf extract has a potential to modulate the renal dysfunctioning caused by arsenic trioxide.


Subject(s)
Arsenic Poisoning/drug therapy , Curcuma/chemistry , Kidney/drug effects , Oxides/toxicity , Phytotherapy , Plant Extracts/therapeutic use , Protective Agents/pharmacology , Animals , Arsenic Trioxide , Arsenicals , Creatinine/blood , Kidney/physiology , Lethal Dose 50 , Plant Extracts/chemistry , Plant Leaves/chemistry , Rats , Rats, Wistar , Urea/blood , Uric Acid/blood
14.
J Environ Manage ; 79(4): 383-98, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16307842

ABSTRACT

A system dynamics model based on the dynamic interactions among a number of system components is developed to estimate CO(2) emissions from the cement industry in India. The CO(2) emissions are projected to reach 396.89 million tonnes by the year 2020 if the existing cement making technological options are followed. Policy options of population growth stabilisation, energy conservation and structural management in cement manufacturing processes are incorporated for developing the CO(2) mitigation scenarios. A 42% reduction in the CO(2) emissions can be achieved in the year 2020 based on an integrated mitigation scenario. Indirect CO(2) emissions from the transport of raw materials to the cement plants and finished product to market are also estimated.


Subject(s)
Carbon Dioxide/chemistry , Construction Materials , Industry
15.
Environ Int ; 31(4): 469-82, 2005 May.
Article in English | MEDLINE | ID: mdl-15788188

ABSTRACT

The increasing demand of the growing population requires enhancement in the production of rice. This has a direct bearing on the global environment since the rice cultivation is one of the major contributors to the methane emissions. As the rice cultivation is intensified with the current practices and technologies, the methane fluxes from paddy fields will substantially rise. Improved high yielding rice varieties together with efficient cultivation techniques will certainly contribute to the curtailment of the methane emission fluxes. In this paper, the system dynamic approach is used for estimating the methane emissions from rice fields in India till the year 2020. Mitigation options studied for curtailing the methane emissions include rice production management, use of low methane emitting varieties of rice, water management and fertilizer amendment. The model is validated quantitatively and sensitivity tests are carried out to examine the robustness of the model.


Subject(s)
Greenhouse Effect , Methane/analysis , Oryza , Agriculture , Environmental Monitoring , India , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...