Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Blood Adv ; 8(9): 2104-2117, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38498701

ABSTRACT

ABSTRACT: Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of poststroke DVT. Neutrophil-specific integrin α9-deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in poststroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.


Subject(s)
Integrins , Neutrophils , Stroke , Vascular Cell Adhesion Molecule-1 , Venous Thrombosis , Animals , Humans , Male , Mice , Cell Adhesion , Disease Models, Animal , Integrins/metabolism , Mice, Knockout , Neutrophil Activation , Neutrophils/metabolism , Stroke/metabolism , Stroke/etiology , Vascular Cell Adhesion Molecule-1/metabolism , Venous Thrombosis/metabolism , Venous Thrombosis/etiology
2.
Am J Pathol ; 194(4): 510-524, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38171450

ABSTRACT

Despite significant advances in medical treatments and drug development, atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of death worldwide. Dysregulated lipid metabolism is a well-established driver of ASCVD. Unfortunately, even with potent lipid-lowering therapies, ASCVD-related deaths have continued to increase over the past decade, highlighting an incomplete understanding of the underlying risk factors and mechanisms of ASCVD. Accumulating evidence over the past decades indicates a correlation between amino acids and disease state. This review explores the emerging role of amino acid metabolism in ASCVD, uncovering novel potential biomarkers, causative factors, and therapeutic targets. Specifically, the significance of arginine and its related metabolites, homoarginine and polyamines, branched-chain amino acids, glycine, and aromatic amino acids, in ASCVD are discussed. These amino acids and their metabolites have been implicated in various processes characteristic of ASCVD, including impaired lipid metabolism, endothelial dysfunction, increased inflammatory response, and necrotic core development. Understanding the complex interplay between dysregulated amino acid metabolism and ASCVD provides new insights that may lead to the development of novel diagnostic and therapeutic approaches. Although further research is needed to uncover the precise mechanisms involved, it is evident that amino acid metabolism plays a role in ASCVD.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Risk Factors , Biomarkers , Amino Acids/therapeutic use
3.
Cell Metab ; 36(1): 116-129.e7, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38171331

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.


Subject(s)
Chemical and Drug Induced Liver Injury , Fatty Liver , Animals , Mice , Acetaminophen/toxicity , Carbon , Glutathione/metabolism , Glycine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Serine/metabolism
4.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260582

ABSTRACT

Background: Neutrophil-mediated persistent inflammation and neutrophil extracellular trap formation (NETosis) promote deep vein thrombosis (DVT). CD14, a co-receptor for toll-like receptor 4 (TLR4), is actively synthesized by neutrophils, and the CD14/TLR4 signaling pathway has been implicated in proinflammatory cytokine overproduction and several aspects of thromboinflammation. The role of CD14 in the pathogenesis of DVT remains unclear. Objective: To determine whether CD14 blockade improves DVT outcomes. Methods: Bulk RNA sequencing and proteomic analyses were performed using isolated neutrophils following inferior vena cava (IVC) stenosis in mice. DVT outcomes (IVC thrombus weight and length, thrombosis incidence, neutrophil recruitment, and NETosis) were evaluated following IVC stenosis in mice treated with a specific anti-CD14 antibody, 4C1, or control antibody. Results: Mice with IVC stenosis exhibited increased plasma levels of granulocyte colony-stimulating factor (G-CSF) along with a higher neutrophil-to-lymphocyte ratio and increased plasma levels of cell-free DNA, elastase, and myeloperoxidase. Quantitative measurement of total neutrophil mRNA and protein expression revealed distinct profiles in mice with IVC stenosis compared to mice with sham surgery. Neutrophils of mice with IVC stenosis exhibited increased inflammatory transcriptional and proteomic responses, along with increased expression of CD14. Treatment with a specific anti-CD14 antibody, 4C1, did not result in any significant changes in the IVC thrombus weight, thrombosis incidence, or neutrophil recruitment to the thrombus. Conclusion: The results of the current study are important for understanding the role of CD14 in the regulation of DVT and suggest that CD14 lacks an essential role in the pathogenesis of DVT following IVC stenosis.

5.
Int J Biol Macromol ; 257(Pt 2): 128717, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081485

ABSTRACT

Biopolymer-based nanoscale drug delivery systems have become a promising approach to overcome the limitations associated with conventional chemotherapeutics used for cancer treatment. Herein, we reported to develop a hydrophilic nanogel (NG) composed of Chitosan (Chi) and sodium alginate (Alg) using the ion gelation method for delivering Berberine hydrochloride (BBR), an alkaloid obtained from Berberis aristata roots. The use of different nanocarriers for BBR delivery has been reported previously, but the bioavailability of these carriers was limited due to phagocytic uptake and poor systemic delivery. The developed NG showed enhanced stability and efficient entrapment of BBR ∼92 %, resulting in a significant increase in bioavailability. The pH-dependent release behavior demonstrated sustained and effective release of ∼86 %, ∼74 % and, ∼53 % BBR at pH 5.5, 6.6, and 7.4 respectively after 72h, indicating its potential as a drug carrier. Additionally, the cellular uptake of BBR was significantly higher ∼19 % in the BBR-NG (25 µM) than in bulk BBR (100 µM), leading to enhanced ROS generation, mitochondrial depolarisation, and inhibition of cell proliferation and colony formation in HepG2 cells. In summary, the results suggest that the Chi/Alg biopolymer-based nano-formulation could be an effective approach for delivering BBR and enhancing its cellular uptake, efficacy, and cytotoxicity.


Subject(s)
Berberine , Chitosan , Polyethylene Glycols , Polyethyleneimine , Humans , Berberine/pharmacology , Chitosan/pharmacology , Hep G2 Cells , Nanogels , Apoptosis , Oxidative Stress
6.
FASEB J ; 37(8): e23105, 2023 08.
Article in English | MEDLINE | ID: mdl-37490000

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most fatal and fastest growing malignancies. Recently, nonalcoholic steatohepatitis (NASH), characterized by liver steatosis, inflammation, cell injury (hepatocyte ballooning), and different stages of fibrosis, has emerged as a major catalyst for HCC. Because the STE20-type kinases, MST3 and MST4, have been described as critical molecular regulators of NASH pathophysiology, we here focused on determining the relevance of these proteins in human HCC. By analyzing public datasets and in-house cohorts, we found that hepatic MST3 and MST4 expression was positively correlated with the incidence and severity of HCC. We also found that the silencing of both MST3 and MST4, but also either of them individually, markedly suppressed the tumorigenesis of human HCC cells including attenuated proliferation, migration, invasion, and epithelial-mesenchymal transition. Mechanistic investigations revealed lower activation of STAT3 signaling in MST3/MST4-deficient hepatocytes and identified GOLGA2 and STRIPAK complex as the binding partners of both MST3 and MST4. These findings reveal that MST3 and MST4 play a critical role in promoting the progression of HCC and suggest that targeting these kinases may provide a novel strategy for the treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Biopsy , Cell Culture Techniques
7.
J Lipid Res ; 63(7): 100238, 2022 07.
Article in English | MEDLINE | ID: mdl-35679904

ABSTRACT

The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases. The aim of this study was to decipher the possible role of STE20-type kinase MAP4K4 in the regulation of hepatocellular lipotoxicity and susceptibility to NAFLD. We found that MAP4K4 mRNA expression in human liver biopsies was positively correlated with key hallmarks of NAFLD (i.e., liver steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis). We also found that the silencing of MAP4K4 suppressed lipid deposition in human hepatocytes by stimulating ß-oxidation and triacylglycerol secretion, while attenuating fatty acid influx and lipid synthesis. Furthermore, downregulation of MAP4K4 markedly reduced the glycolysis rate and lowered incidences of oxidative/endoplasmic reticulum stress. In parallel, we observed suppressed JNK and ERK and increased AKT phosphorylation in MAP4K4-deficient hepatocytes. Together, these results provide the first experimental evidence supporting the potential involvement of STE20-type kinase MAP4K4 as a component of the hepatocellular lipotoxic milieu promoting NAFLD susceptibility.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Hepatocytes/metabolism , Humans , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Protein Serine-Threonine Kinases , Triglycerides/metabolism
8.
Cell Mol Gastroenterol Hepatol ; 13(2): 405-423, 2022.
Article in English | MEDLINE | ID: mdl-34624527

ABSTRACT

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is one of the most fatal and fastest-growing cancers. Recently, nonalcoholic steatohepatitis (NASH) has been recognized as a major catalyst for HCC. Thus, additional research is critically needed to identify mechanisms involved in NASH-induced hepatocarcinogenesis, to advance the prevention and treatment of NASH-driven HCC. Because the sterile 20-type kinase serine/threonine kinase 25 (STK25) exacerbates NASH-related phenotypes, we investigated its role in HCC development and aggravation in this study. METHODS: Hepatocarcinogenesis was induced in the context of NASH in Stk25 knockout and wild-type mice by combining chemical procarcinogens and a dietary challenge. In the first cohort, a single injection of diethylnitrosamine was combined with a high-fat diet-feeding. In the second cohort, chronic administration of carbon tetrachloride was combined with a choline-deficient L-amino-acid-defined diet. To study the cell-autonomous mode of action of STK25, we silenced this target in the human hepatocarcinoma cell line HepG2 by small interfering RNA. RESULTS: In both mouse models of NASH-driven HCC, the livers from Stk25-/- mice showed a markedly lower tumor burden compared with wild-type controls. We also found that genetic depletion of STK25 in mice suppressed liver tumor growth through reduced hepatocellular apoptosis and decreased compensatory proliferation, by a mechanism that involves protection against hepatic lipotoxicity and inactivation of STAT3, ERK1/2, and p38 signaling. Consistently, silencing of STK25 suppressed proliferation, apoptosis, migration, and invasion in HepG2 cells, which was accompanied by lower expression of the markers of epithelial-mesenchymal transition and autophagic flux. CONCLUSIONS: This study provides evidence that antagonizing STK25 signaling hinders the development of NASH-related HCC and provides an impetus for further analysis of STK25 as a therapeutic target for NASH-induced HCC treatment in human beings.


Subject(s)
Carcinoma, Hepatocellular , Intracellular Signaling Peptides and Proteins , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Protein Serine-Threonine Kinases , Animals , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/pathology , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/pathology , Oncogenes , Protein Serine-Threonine Kinases/genetics
9.
Mol Metab ; 54: 101353, 2021 12.
Article in English | MEDLINE | ID: mdl-34634521

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid storage in hepatocytes, has recently emerged as a leading global cause of chronic liver disease. The aim of this study was to examine the role of STE20-type protein kinase TAOK3, which has previously been shown to associate with hepatic lipid droplets, in the initiation and aggravation of human NAFLD. METHODS: The correlation between TAOK3 mRNA expression and the severity of NAFLD was investigated in liver biopsies from 62 individuals. In immortalized human hepatocytes, intracellular fat deposition, lipid metabolism, and oxidative and endoplasmic reticulum stress were analyzed when TAOK3 was overexpressed or knocked down by small interfering RNA. Subcellular localization of TAOK3 was characterized in human and mouse hepatocytes by immunofluorescence microscopy. RESULTS: We found that the TAOK3 transcript levels in human liver biopsies were positively correlated with the key lesions of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Overexpression of TAOK3 in cultured human hepatocytes exacerbated lipid storage by inhibiting ß-oxidation and triacylglycerol secretion while enhancing lipid synthesis. Conversely, silencing of TAOK3 attenuated lipid deposition in human hepatocytes by stimulating mitochondrial fatty acid oxidation and triacylglycerol efflux while suppressing lipogenesis. We also found aggravated or decreased oxidative/endoplasmic reticulum stress in human hepatocytes with increased or reduced TAOK3 levels, respectively. The subcellular localization of TAOK3 in human and mouse hepatocytes was confined to intracellular lipid droplets. CONCLUSIONS: This study provides the first evidence that hepatic lipid droplet-coating kinase TAOK3 is a critical regulatory node controlling liver lipotoxicity and susceptibility to NAFLD.


Subject(s)
Liver/metabolism , Protein Serine-Threonine Kinases/metabolism , Cells, Cultured , Female , Humans , Lipid Metabolism , Male , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
3 Biotech ; 11(3): 115, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33604231

ABSTRACT

Premna serratifolia L. (Lamiaceae) is a medicinal plant, widely distributed in the tropical and subtropical regions and commonly used in traditional medicine. The current study was focused to evaluate the cytotoxic potential of aqueous extract of root of P. serratifolia (AEPS) against human hepatoblastoma cancer cell line (Hep G2).The yield of the dried extract was 5.8% and used for further studies.Cytotoxic potential of AEPS was analyzed by MTT assay, which exhibits IC50 value 1000 µg/mL after 48 h incubation. Hoechst and AO/EtBr staining, ROS measurement, mitochondrial membrane potential, clonogenic and wound healing assays also confirmed the cytotoxic efficacy of AEPS in dose and time-dependent manner. UPLC-Q-TOF-MS/MS analysis of AEPS confirmed the presence of 12polyphenolic compounds, namely 4-hydroxy-3-methoxycinnamic acid, linarin, peonidin-3,5-O-di-beta-glucopyranoside, diosmin, trans-cinnamic acid, daidzein, saponarin, homoorietin, acacetin, sarsasapogenin, phytol and sissotrin. The cytotoxic potential of AEPS might due to presence of biologically active polyphenolic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...