Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(19): 56731-56742, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36929264

ABSTRACT

During the present century, plant-based zinc oxide nanoparticles (ZnO-NPs) are exploited extensively for their vast biological properties due to their unique characteristic features and eco-friendly nature. Diabetes is one of the fast-growing human diseases/abnormalities worldwide, and the need for new/ novel antiglycation products is the need of the hour. The study deals with the phyto-fabrication of ZnO-NPs from Boerhaavia erecta, a medicinally important plant, and to evaluate their antioxidant and antiglycation ability in vitro. UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to characterize the phyto-fabricated ZnO-NPs. The characterization of nanoparticles revealed that the particles showed an absorption peak at 362 nm and band gap energy of 3.2 eV, approximately 20.55 nm in size, with a ZnO elemental purity of 96.61%. The synthesized particles were found agglomerated when observed under SEM, and the FT-IR studies proved that the phyto-constituents of the extract involved during the different stages (reduction, capping, and stabilization) of nanoparticles synthesis. The antioxidant and metal chelating activities confirmed that ZnO-NPs could inhibit the free radicals generated, which was dose-dependent with an IC50 value between 1.81 and 1.94 mg mL-1, respectively. In addition, the phyto-fabricated nanoparticles blocked the formation of advanced glycation end products (AGEs) as noticed through inhibition of Amadori products, trapping of reactive dicarbonyl intermediate and breaking the cross-link of glycated protein. It was also noted that the phyto-fabricated ZnO-NPs significantly prevented the damage of red blood corpuscles (RBCs) induced by MGO. The present study's findings will provide an experimental basis for exploring ZnO-NPs in diabetes-related complications.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , X-Ray Diffraction , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metal Nanoparticles/chemistry
2.
Molecules ; 28(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36838574

ABSTRACT

In the present study, the binding affinity of 52 bioactive secondary metabolites from Wedelia trilobata towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from -5.3 kcal/mol to -10.1 kcal/mol. However, the lowest binding energy (-10.1 kcal/mol) was offered by Friedelin against Bcl-2 protein when compared to other metabolites and the standard drug Obatoclax (-8.4 kcal/mol). The molecular dynamics simulations revealed that the Friedelin-Bcl-2 protein complex was found to be stable throughout the simulation period of 100 ns. Overall, the predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of Friedelin are relatively better than Obatoclax, with the most noticeable differences in many parameters where Friedelin has no AMES toxicity, hepatotoxicity, and skin sensitization. The ADMET profiling of selected compounds supported their in silico drug-likeness properties. Based on the computational analyses, the present study concluded that Friedelin of W. trilobata was found to be the potential inhibitor of the Bcl-2 protein, which merits attention for further in vitro and in vivo studies before clinical trials.


Subject(s)
Neoplasms , Phytochemicals , Wedelia , Humans , Apoptosis Regulatory Proteins , Cell Survival , Molecular Docking Simulation , Molecular Dynamics Simulation , Proto-Oncogene Proteins c-bcl-2/metabolism , Wedelia/chemistry , Phytochemicals/pharmacology
4.
Sci Rep ; 12(1): 22446, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575224

ABSTRACT

Cladosporium spp. have been reported for their great diversity of secondary metabolites which represent as a prominent base material for verifying the biological activities. Several bioactive compounds which have antimicrobial, cytotoxic, quorum sensing inhibitory and phytotoxic activities have been isolated from Cladosporium species. Most of them are still needed to be explored for their anticancer properties. Therefore, the present study is focused on screening and identifying the bioactive compounds of Cladosporium spp. for their anticancer activity via the integrated approaches of Molecular Docking (MD), Molecular Dynamics Simulation (MDS) and Density Functional Theory (DFT) studies. A total of 123 bioactive compounds of Cladosporium spp. were explored for their binding affinity with the selected breast cancer drug target receptor such as estrogen receptor alpha (PDB:6CBZ). The Molecular Docking studies revealed that amongst the bioactive compounds screened, Altertoxin X and Cladosporol H showed a good binding affinity of - 10.5 kcal/mol and - 10.3 kcal/mol, respectively, with the estrogen receptor alpha when compared to the reference compound (17[Formula: see text]-Estradiol: - 10.2 kcal/mol). The MDS study indicated the stable binding patterns and conformation of the estrogen receptor alpha-Altertoxin X complex in a stimulating environment. In addition, in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) study suggested that Altertoxin X has a good oral bioavailability with a high LD[Formula: see text] value of 2.375 mol/kg and did not cause any hepatotoxicity and skin sensitization. In summary, the integrated approaches revealed that Altertoxin X possesses a promising anticancer activity and could serve as a new therapeutic drug for breast cancer treatment.


Subject(s)
Antineoplastic Agents , Neoplasms , Molecular Docking Simulation , Cladosporium , Estrogen Receptor alpha , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
5.
PLoS One ; 17(10): e0275432, 2022.
Article in English | MEDLINE | ID: mdl-36201520

ABSTRACT

Breast cancer is the second most common malignancy in females worldwide and poses a great challenge that necessitates the identification of novel therapeutic agents from several sources. This research aimed to study the molecular docking and molecular dynamics simulations of four proteins (such as PDB: 6CBZ, 1FDW, 5GWK and 2WTT) with the selected phytochemicals from Withania somnifera to identify the potential inhibitors for breast cancer. The molecular docking result showed that among 44 compounds, two of them, Ashwagandhanolide and Withanolide sulfoxide have the potential to inhibit estrogen receptor alpha (ERα), 17-beta-hydroxysteroid -dehydrogenase type 1 (17ß-HSD1), topoisomerase II alpha (TOP2A) and p73 tetramerization domain that are expressed during breast cancer. The molecular dynamics (MD) simulations results suggested that Ashwagandhanolide remained inside the binding cavity of four targeted proteins and contributed favorably towards forming a stable protein-ligand complex throughout the simulation. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties confirmed that Ashwagandhanolide is hydrophobic and has moderate intestinal permeability, good intestinal absorption, and poor skin permeability. The compound has a relatively low VDss value (-1.652) and can be transported across ABC transporter and good central nervous system (CNS) permeability but did not easily cross the blood-brain barrier (BBB). This compound does not possess any mutagenicity, hepatotoxicity and skin sensitization. Based on the results obtained, the present study highlights the anticancer potential of Ashwagandhanolide, a compound from W. somnifera. Furthermore, in vitro and in vivo studies are necessary to perform before clinical trials to prove the potentiality of Ashwagandhanolide.


Subject(s)
Neoplasms , Withania , Withanolides , ATP-Binding Cassette Transporters , DNA Topoisomerases, Type II , Drug Delivery Systems , Ergosterol/analogs & derivatives , Estrogen Receptor alpha , Hydroxysteroids , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Sulfoxides , Withania/chemistry , Withanolides/pharmacology
6.
Molecules ; 26(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567661

ABSTRACT

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.


Subject(s)
Ipomoea/metabolism , Nanoparticles/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacology , Free Radical Scavengers/toxicity , Green Chemistry Technology , HT29 Cells , Humans , Mutagenicity Tests , Onions/drug effects , Onions/genetics , Picrates/chemistry , Zinc Oxide/metabolism , Zinc Oxide/toxicity
7.
Int J Endocrinol Metab ; 18(4): e107641, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33613680

ABSTRACT

BACKGROUND: Muslims fast during the month of Ramadan by abstinence from food and drink every day from dawn to sunset. Studies have reported contradictory results with respect to the changes in body weight and biochemical parameters. No study has been conducted on the association between fasting and body weight and biochemical parameters in the Indian setting on healthy Muslim subjects. OBJECTIVES: To assess the effect of fasting during Ramadan on biochemical parameters such as lipid profile, liver function test, renal function test, antioxidant status, random blood sugar, hemoglobin, body composition, and blood pressure in a sample of healthy individuals. METHODS: In this study, 52 healthy free-living participants (25 males, 27 females, 21-64 years) who met the inclusion and exclusion criteria and completed both follow-ups (before and after Ramadan) were studied. Participants were fasting 12 hours a day for at least 21 days, including menstruating women. It was a free-living study with no dietary restrictions. Anthropometry, lipid profile, liver and renal function tests were measured by standard methods. Body composition was analyzed by bioelectrical impedance. RESULTS: Significant beneficial changes in albumin, alanine aminotransferase, creatinine, and high-density lipoprotein (HDL) were observed, while total cholesterol, random blood sugar, aspartate aminotransferase, and alkaline phosphatase enzymes remained unchanged after Ramadan. Fasting did bring in some changes in body composition; among both men and women, mean weight loss ranged from 0.81 - 1.4 kg in majority of the subjects, which was due to loss in muscle mass. Moderate changes in intra- and extracellular water content was observed after fasting. CONCLUSIONS: Significant improvements were observed in HDL levels and liver function tests, which can be attributed to the loss of body weight. Improvement in liver function tests may be related to the changes in cytokines and alteration in sleep patterns. Ramadan-like fasting, along with the nutritional education prior to fasting, may be beneficial and effective in the spiritual and overall well-being.

8.
Biomolecules ; 9(12)2019 12 16.
Article in English | MEDLINE | ID: mdl-31888262

ABSTRACT

The development of advanced glycation end-products (AGEs) inhibitors is considered to have therapeutic potential in diabetic complications inhibiting the loss of the biomolecular function. In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized from aqueous leaf extract of Morus indica and were characterized by various techniques such as ultraviolet (UV)-Vis spectroscopy, Powder X-Ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Further, the inhibition of AGEs formation after exposure to ZnO-NPs was investigated by in-vitro, in-vivo, and molecular docking studies. Biochemical and histopathological changes after exposure to ZnO-NPs were also studied in streptozotocin-induced diabetic rats. ZnO-NPs showed an absorption peak at 359 nm with a purity of 92.62% and ~6-12 nm in size, which is characteristic of nanoparticles. The images of SEM showed agglomeration of smaller ZnO-NPs and EDS authenticating that the synthesized nanoparticles were without impurities. The biosynthesized ZnO-NPs showed significant inhibition in the formation of AGEs. The particles were effective against methylglyoxal (MGO) mediated glycation of bovine serum albumin (BSA) by inhibiting the formation of AGEs, which was dose-dependent. Further, the presence of MGO resulted in complete damage of biconcave red blood corpuscles (RBCs) to an irregular shape, whereas the morphological changes were prevented when they were treated with ZnO-NPs leading to the prevention of complications caused due to glycation. The administration of ZnO-NPs (100 mg Kg-1) in streptozotocin(STZ)-induced diabetic rats reversed hyperglycemia and significantly improved hepatic enzymes level and renal functionality, also the histopathological studies revealed restoration of kidney and liver damage nearer to normal conditions. Molecular docking of BSA with ZnO-NPs confirms that masking of lysine and arginine residues is one of the possible mechanisms responsible for the potent antiglycation activity of ZnO-NPs. The findings strongly suggest scope for exploring the therapeutic potential of diabetes-related complications.


Subject(s)
Erythrocytes/drug effects , Glycation End Products, Advanced/antagonists & inhibitors , Molecular Docking Simulation , Morus/chemistry , Nanoparticles/chemistry , Pyruvaldehyde/antagonists & inhibitors , Zinc Oxide/pharmacology , Animals , Cattle , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Erythrocytes/metabolism , Glycation End Products, Advanced/metabolism , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Male , Morus/metabolism , Nanoparticles/metabolism , Pyruvaldehyde/pharmacology , Rats , Rats, Wistar , Serum Albumin, Bovine/antagonists & inhibitors , Serum Albumin, Bovine/metabolism , Streptozocin , Zinc Oxide/chemistry , Zinc Oxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...