Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
Diagnostics (Basel) ; 14(16)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39202254

ABSTRACT

BACKGROUND: Multidrug-resistant HIV strains challenge treatment efficacy and increase mortality rates. Next-generation sequencing (NGS) technology swiftly detects variants, facilitating personalized antiretroviral therapy. AIM: This study aimed to validate the Vela Diagnostics NGS platform for HIV drug resistance mutation analysis, rigorously assessed with clinical samples and CAP proficiency testing controls previously analyzed by Sanger sequencing. METHOD: The experimental approach involved the following: RNA extraction from clinical specimens, reverse transcription polymerase chain reaction (RT-PCR) utilizing the Sentosa SX 101 platform, library preparation with the Sentosa SQ HIV Genotyping Assay, template preparation, sequencing using the Sentosa SQ301 instrument, and subsequent data analysis employing the Sentosa SQ Suite and SQ Reporter software. Drug resistance profiles were interpreted using the Stanford HIV Drug Resistance Database (HIVdb) with the HXB2 reference sequence. RESULTS: The Vela NGS system successfully identified a comprehensive array of drug resistance mutations across the tested samples: 28 nucleoside reverse transcriptase inhibitors (NRTI), 25 non-nucleoside reverse transcriptase inhibitors (NNRTI), 25 protease inhibitors (PI), and 10 integrase gene-specific variants. Dilution experiments further validated the system's sensitivity, detecting drug resistance mutations even at viral loads lower than the recommended threshold (1000 copies/mL) set by Vela Diagnostics. SCOPE: This study underscores the validation and clinical applicability of the Vela NGS system, and its implementation may offer clinicians enhanced precision in therapeutic decision-making for individuals living with HIV.

2.
Cancers (Basel) ; 15(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37370824

ABSTRACT

The standard-of-care (SOC) for genomic testing of myeloid cancers primarily relies on karyotyping/fluorescent in situ hybridization (FISH) (cytogenetic analysis) and targeted gene panels (usually ≤54 genes) that harbor hotspot pathogenic variants (molecular genetic analysis). Despite this combinatorial approach, ~50% of myeloid cancer genomes remain cytogenetically normal, and the limited sequencing variant profiles obtained from targeted panels are unable to resolve the molecular etiology of many myeloid tumors. In this study, we evaluated the performance and clinical utility of combinatorial use of optical genome mapping (OGM) and a 523-gene next-generation sequencing (NGS) panel for comprehensive genomic profiling of 30 myeloid tumors and compared it to SOC cytogenetic methods (karyotyping and FISH) and a 54-gene NGS panel. OGM and the 523-gene NGS panel had an analytical concordance of 100% with karyotyping, FISH, and the 54-gene panel, respectively. Importantly, the IPSS-R cytogenetic risk group changed from very good/good to very poor in 22% of MDS (2/9) cases based on comprehensive profiling (karyotyping, FISH, and 54-gene panel vs. OGM and 523-gene panel), while additionally identifying six compound heterozygous events of potential clinical relevance in six cases (6/30, 20%). This cost-effective approach of using OGM and a 523-gene NGS panel for comprehensive genomic profiling of myeloid cancers demonstrated increased yield of actionable targets that can potentially result in improved clinical outcomes.

3.
Genes (Basel) ; 13(4)2022 04 03.
Article in English | MEDLINE | ID: mdl-35456449

ABSTRACT

Conventional cytogenetic analysis of products of conception (POC) is of limited utility because of failed cultures, as well as microbial and maternal cell contamination (MCC). Optical genome mapping (OGM) is an emerging technology that has the potential to replace conventional cytogenetic methods. The use of OGM precludes the requirement for culturing (and related microbial contamination). However, a high percentage of MCC impedes a definitive diagnosis, which can be addressed by an additional pre-analytical quality control step that includes histological assessment of H&E stained slides from formalin-fixed paraffin embedded (FFPE) tissue with macro-dissection for chorionic villi to enrich fetal tissue component for single nucleotide polymorphism microarray (SNPM) analysis. To improve the diagnostic yield, an integrated workflow was devised that included MCC characterization of POC tissue, followed by OGM for MCC-negative cases or SNPM with histological assessment for MCC-positive cases. A result was obtained in 93% (29/31) of cases with a diagnostic yield of 45.1% (14/31) with the proposed workflow, compared to 9.6% (3/31) and 6.4% (2/31) with routine workflow, respectively. The integrated workflow with these technologies demonstrates the clinical utility and higher diagnostic yield in evaluating POC specimens.


Subject(s)
Fertilization , Polymorphism, Single Nucleotide , Chromosome Mapping/methods , Cytogenetic Analysis/methods , Microarray Analysis/methods
4.
Sci Rep ; 12(1): 3480, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241679

ABSTRACT

The COVID-19 pandemic has resulted in significant diversion of human and material resources to COVID-19 diagnostics, to the extent that influenza viruses and co-infection in COVID-19 patients remains undocumented and pose serious public-health consequences. We optimized and validated a highly sensitive RT-PCR based multiplex-assay for the detection of SARS-CoV-2, influenza A and B viruses in a single-test. This study evaluated clinical specimens (n = 1411), 1019 saliva and 392 nasopharyngeal swab (NPS), tested using two-assays: FDA-EUA approved SARS-CoV-2 assay that targets N and ORF1ab gene, and the PKamp-RT-PCR based assay that targets SARS-CoV-2, influenza viruses A and B. Of the 1019 saliva samples, 17.0% (174/1019) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [91.9% (160/174) vs. 87.9% (153/174)], respectively. Of the 392 NPS samples, 10.4% (41/392) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [97.5% (40/41) vs. 92.1% (39/41)], respectively. This study presents clinical validation of a multiplex-PCR assay for testing SARS-CoV-2, influenza A and B viruses, using NPS and saliva samples, and demonstrates the feasibility of implementing the assay without disrupting the existing laboratory workflow.


Subject(s)
Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Humans , Limit of Detection , Reproducibility of Results
5.
Viruses ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: mdl-34696495

ABSTRACT

Two serious public health challenges have emerged in the current COVID-19 pandemic namely, deficits in SARS-CoV-2 variant monitoring and neglect of other co-circulating respiratory viruses. Additionally, accurate assessment of the evolution, extent, and dynamics of the outbreak is required to understand the transmission of the virus. To address these challenges, we evaluated 533 samples using a high-throughput next-generation sequencing (NGS) respiratory viral panel (RVP) that includes 40 viral pathogens. The performance metrics revealed a PPA, NPA, and accuracy of 95.98%, 85.96%, and 94.4%, respectively. The clade for pangolin lineage B that contains certain distant variants, including P4715L in ORF1ab, Q57H in ORF3a, and S84L in ORF8 covarying with the D614G spike protein mutation, were the most prevalent early in the pandemic in Georgia, USA. The isolates from the same county formed paraphyletic groups, indicating virus transmission between counties. The study demonstrates the clinical and public health utility of the NGS-RVP to identify novel variants that can provide actionable information to prevent or mitigate emerging viral threats and models that provide insights into viral transmission patterns and predict transmission/resurgence of regional outbreaks as well as providing critical information on co-circulating respiratory viruses that might be independent factors contributing to the global disease burden.


Subject(s)
COVID-19/epidemiology , Genome, Viral/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/transmission , High-Throughput Nucleotide Sequencing , Humans , Limit of Detection , Phylogeny , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
6.
Diagnostics (Basel) ; 11(9)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34573964

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is an infectious virus that causes coronavirus disease 2019 (COVID-19) transmitted mainly through droplets and aerosol affecting the respiratory tract and lungs. Little is known regarding why some individuals are more susceptible than others and develop severe symptoms. In this study, we analyzed the nasopharyngeal microbiota profile of aged patients with COVID-19 (asymptomatic vs. symptomatic) vs. healthy individuals. We examined the nasopharynx swab of 84 aged-matched patients, out of which 27 were negative asymptomatic (NegA), 30 were positive asymptomatic (PA), and 27 patients were positive symptomatic (PSY). Our analysis revealed the presence of abundant Cyanobacterial taxa at phylum level in PA (p-value = 0.0016) and PSY (p-value = 0.00038) patients along with an upward trend in the population of Litoricola, Amylibacter, Balneola, and Aeromonas at the genus level. Furthermore, to know the relationship between the nasal microbiota composition and severity of COVID-19, we compared PA and PSY groups. Our data show that the nasal microbiota of PSY patients was significantly enriched with the signatures of two bacterial taxa: Cutibacterium (p-value = 0.045) and Lentimonas (p-value = 0.007). Furthermore, we also found a significantly lower abundance of five bacterial taxa, namely: Prevotellaceae (p-value = 7 × 10-6), Luminiphilus (p-value = 0.027), Flectobacillus (p-value = 0.027), Comamonas (p-value = 0.048), and Jannaschia (p-value = 0.012) in PSY patients. The dysbiosis of the nasal microbiota in COVID-19 positive patients might have a role in contributing to the severity of COVID-19. The findings of our study show that there is a strong correlation between the composition of the nasal microbiota and COVID-19 severity. Further studies are needed to validate our finding in large-scale samples and to correlate immune response (cytokine Strome) and nasal microbiota to identify underlying mechanisms and develop therapeutic strategies against COVID-19.

8.
Curr Issues Mol Biol ; 43(2): 845-867, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34449545

ABSTRACT

This review discusses the current testing methodologies for COVID-19 diagnosis and explores next-generation sequencing (NGS) technology for the detection of SARS-CoV-2 and monitoring phylogenetic evolution in the current COVID-19 pandemic. The review addresses the development, fundamentals, assay quality control and bioinformatics processing of the NGS data. This article provides a comprehensive review of the obstacles and opportunities facing the application of NGS technologies for the diagnosis, surveillance, and study of SARS-CoV-2 and other infectious diseases. Further, we have contemplated the opportunities and challenges inherent in the adoption of NGS technology as a diagnostic test with real-world examples of its utility in the fight against COVID-19.


Subject(s)
COVID-19/virology , High-Throughput Nucleotide Sequencing/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Computational Biology/methods , Humans , Molecular Epidemiology/methods , Pandemics , Phylogeny , SARS-CoV-2/isolation & purification
9.
Acad Pathol ; 8: 23742895211023948, 2021.
Article in English | MEDLINE | ID: mdl-34263025

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, led to unprecedented demands assigned to clinical diagnostic laboratories worldwide, forcing them to make significant changes to their regular workflow as they adapted to new diagnostic tests and sample volumes. Herein, we summarize the modifications/adaptation the laboratory had to exercise to cope with rapidly evolving situations in the current pandemic. In the first phase of the pandemic, the laboratory validated 2 reverse transcription polymerase chain reaction-based assays to test ∼1000 samples/day and rapidly modified procedures and validated various preanalytical and analytical steps to overcome the supply chain constraints that would have otherwise derailed testing efforts. Further, the pooling strategy was validated for wide-scale population screening using nasopharyngeal swab samples and saliva samples. The translational research arm of the laboratory pursued several initiatives to understand the variable clinical manifestations that this virus presented in the population. The phylogenetic evolution of the virus was investigated using next-generation sequencing technology. The laboratory has initiated the formation of a consortium that includes groups investigating genomes at the level of large structural variants, using genome optical mapping via this collaborative global effort. This article summarizes our journey as the laboratory has sought to adapt and continue to positively contribute to the unprecedented demands and challenges of this rapidly evolving pandemic.

10.
Diagnostics (Basel) ; 11(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069462

ABSTRACT

OBJECTIVES: Limitations of widespread current COVID-19 diagnostic testing exist in both the pre-analytical and analytical stages. To alleviate these limitations, we developed a universal saliva processing protocol (SalivaSTAT) that would enable an extraction-free RT-PCR test using commercially available RT-PCR kits. METHODS: We optimized saliva collection devices, heat-shock treatment, and homogenization. Saliva samples (879) previously tested using the FDA-EUA method were reevaluated with the optimized SalivaSTAT protocol using two widely available commercial RT-PCR kits. A five-sample pooling strategy was evaluated as per FDA guidelines. RESULTS: Saliva collection (done without any media) showed performance comparable to that of the FDA-EUA method. The SalivaSTAT protocol was optimized by incubating saliva samples at 95 °C for 30-min and homogenization, followed by RT-PCR assay. The clinical sample evaluation of 630 saliva samples using the SalivaSTAT protocol with PerkinElmer (600-samples) and CDC (30-samples) RT-PCR assay achieved positive (PPA) and negative percent agreements (NPAs) of 95.0% and 100%, respectively. The LoD was established as ~60-180 copies/mL by absolute quantification. Furthermore, a five-sample-pooling evaluation using 250 saliva samples achieved a PPA and NPA of 92% and 100%, respectively. CONCLUSION: We have optimized an extraction-free RT-PCR assay for saliva samples that demonstrates comparable performance to FDA-EUA assay (Extraction and RT-PCR).

11.
Front Genet ; 12: 503830, 2021.
Article in English | MEDLINE | ID: mdl-34093633

ABSTRACT

We describe the clinical validation of a targeted DNA and RNA-based next-generation sequencing (NGS) assay at two clinical molecular diagnostic laboratories. This assay employs simultaneous DNA and RNA analysis of all coding exons to detect small variants (single-nucleotide variants, insertions, and deletions) in 148 genes, amplifications in 59 genes, and fusions and splice variants in 55 genes. During independent validations at two sites, 234 individual specimens were tested, including clinical formalin-fixed, paraffin-embedded (FFPE) tumor specimens, reference material, and cell lines. Samples were prepared using the Illumina TruSight Tumor 170 (TST170) kit, sequenced with Illumina sequencers, and the data were analyzed using the TST170 App. At both sites, TST170 had ≥98% success for ≥250× depth for ≥95% of covered positions. Variant calling was accurate and reproducible at allele frequencies ≥5%. Limit of detection studies determined that inputs of ≥50 ng of DNA (with ≥3.3 ng/µl) and ≥50 ng RNA (minimum of 7 copies/ng) were optimal for high analytical sensitivity. The TST170 assay results were highly concordant with prior results using different methods across all variant categories. Optimization of nucleic acid extraction and DNA shearing, and quality control following library preparation is recommended to maximize assay success rates. In summary, we describe the validation of comprehensive and simultaneous DNA and RNA-based NGS testing using TST170 at two clinical sites.

12.
J Mol Diagn ; 23(7): 788-795, 2021 07.
Article in English | MEDLINE | ID: mdl-33957320

ABSTRACT

The clinical performance of saliva compared with nasopharyngeal swabs (NPSs) has shown conflicting results in healthcare and community settings. In the present study, a total of 429 matched NPS and saliva sample pairs, collected in either healthcare or community setting, were evaluated. Phase-1 (protocol U) tested 240 matched NPS and saliva sample pairs; phase 2 (SalivaAll protocol) tested 189 matched NPS and saliva sample pairs, with an additional sample homogenization step before RNA extraction. A total of 85 saliva samples were evaluated with both protocols. In phase-1, 28.3% (68/240) samples tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from saliva, NPS, or both. The detection rate from saliva was lower compared with that from NPS samples (50.0% versus 89.7%). In phase-2, 50.2% (95/189) samples tested positive for SARS-CoV-2 from saliva, NPS, or both. The detection rate from saliva was higher compared with that from NPS samples (97.8% versus 78.9%). Of the 85 saliva samples evaluated with both protocols, the detection rate was 100% for samples tested with SalivaAll, and 36.7% with protocol U. The limit of detection with SalivaAll protocol was 20 to 60 copies/mL. The pooled testing approach demonstrated a 95% positive and 100% negative percentage agreement. This protocol for saliva samples results in higher sensitivity compared with NPS samples and breaks the barrier to using pooled saliva for SARS-CoV-2 testing.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Delivery of Health Care , Mass Screening/methods , Population Surveillance/methods , Residence Characteristics , SARS-CoV-2/genetics , Saliva/virology , COVID-19/epidemiology , COVID-19/virology , Diagnostic Tests, Routine/methods , Georgia/epidemiology , Humans , Limit of Detection , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
14.
Antioxidants (Basel) ; 10(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374239

ABSTRACT

Oxidative damage has been identified as a major causative factor in degenerative diseases of the retina; retinal pigment epithelial (RPE) cells are at high risk. Hence, identifying novel strategies for increasing the antioxidant capacity of RPE cells, the purpose of this study, is important. Specifically, we evaluated the influence of selenium in the form of selenomethionine (Se-Met) in cultured RPE cells on system xc- expression and functional activity and on cellular levels of glutathione, a major cellular antioxidant. ARPE-19 and mouse RPE cells were cultured with and without selenomethionine (Se-Met), the principal form of selenium in the diet. Promoter activity assay, uptake assay, RT-PCR, northern and western blots, and immunofluorescence were used to analyze the expression of xc-, Nrf2, and its target genes. Se-Met activated Nrf2 and induced the expression and function of xc- in RPE. Other target genes of Nrf2 were also induced. System xc- consists of two subunits, and Se-Met induced the subunit responsible for transport activity (SLC7A11). Selenocysteine also induced xc- but with less potency. The effect of Se-met on xc- was associated with an increase in maximal velocity and an increase in substrate affinity. Se-Met increased the cellular levels of glutathione in the control, an oxidatively stressed RPE. The Se-Met effect was selective; under identical conditions, taurine transport was not affected and Na+-coupled glutamate transport was inhibited. This study demonstrates that Se-Met enhances the antioxidant capacity of RPE by inducing the transporter xc- with a consequent increase in glutathione.

15.
Future Microbiol ; : 1483-1487, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33179525

ABSTRACT

RT-PCR-based assays for the detection of SARS-CoV-2 have played an essential role in the current COVID-19 pandemic. However, the sample collection and test reagents are in short supply, primarily due to supply chain issues. Thus, to eliminate testing constraints, we have optimized three key process variables: RNA extraction and RT-PCR reactions, different sample types and media to facilitate SARS-CoV-2 testing. By performing various validation and bridging studies, we have shown that various sample types such as nasopharyngeal swab, bronchioalveolar lavage and saliva, collected using conventional nasopharyngeal swabs, ESwab or 3D-printed swabs and, preserved in viral transport media, universal transport media, 0.9% sodium chloride or Amies media are compatible with RT-PCR assay for COVID-19. Besides, the reduction of PCR reagents by up to fourfold also produces reliable results.

16.
PLoS One ; 15(10): e0240976, 2020.
Article in English | MEDLINE | ID: mdl-33075099

ABSTRACT

The extensively employed limited-gene coverage NGS panels lead to clinically inadequate molecular profiling of myeloid neoplasms. The aim of the present investigation was to assess performance and clinical utility of a comprehensive DNA panel for myeloid neoplasms. Sixty-one previously well characterized samples were sequenced using TSO500 library preparation kit on NextSeq550 platform. Variants with a VAF ≥ 5% and a total read depth of >50X were filtered for analysis. The following results were recorded-for clinical samples: clinical sensitivity (97%), specificity (100%), precision (100%) and accuracy (99%) whereas reference control results were 100% for analytical sensitivity, specificity, precision and accuracy, with high intra- and inter-run reproducibility. The panel identified 880 variants across 292 genes, of which, 749 variants were in genes not covered in the 54 gene panel. The investigation revealed 14 variants in ten genes, and at least one was present in 96.2% patient samples that were pathogenic/ likely pathogenic in myeloid neoplasms. Also, 15 variants in five genes were found to be pathogenic/ likely pathogenic in other tumor types. Further, the TMB and MSI scores ranged from 0-7 and 0-9, respectively. The high analytical performance and clinical utility of this comprehensive NGS panel makes it practical and clinically relevant for adoption in clinical laboratories for routine molecular profiling of myeloid neoplasms.


Subject(s)
Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Leukemia, Myeloid/genetics , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics , Aged , Cost-Benefit Analysis , Female , Gene Regulatory Networks , Humans , Male , Microsatellite Instability , Mutation , Sequence Analysis, DNA , Time Factors
17.
J Mol Diagn ; 22(10): 1294-1299, 2020 10.
Article in English | MEDLINE | ID: mdl-32738298

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing has lagged in many countries because of test kit shortages and analytical process bottlenecks. This study investigated the feasibility and accuracy of a sample pooling approach for wide-scale population screening for coronavirus disease 2019. A total of 940 nasopharyngeal swab samples (934 negative and 6 positive) previously tested for SARS-CoV-2 were deidentified and assigned random numbers for analysis, and 94 pools of 10 samples each were generated. Automated RNA extraction, followed by RT-PCR, was performed in a 96-well plate. Positive pools were identified, and the individual samples were reanalyzed. Of the 94 pools/wells, four were positive [Ct values: N (22.7 to 28.3), ORF1ab (23.3 to 27.2), and internal control (34.4 to 35.4)]. The 40 samples comprising the four pools were identified and reanalyzed individually; six samples were positive, with Ct values of N gene, ORF1ab, and internal control comparable to their respective wells. Additional experiments were performed on samples with high Ct values, and overall results showed 91.6% positive and 100% negative agreement compared with individual testing approach. Thus, 940 samples were tested in 148 reactions compared with 940 reactions in routine screening. The sample pooling strategy may help catch up with testing needs and minimal turnaround times and facilitate enormous savings on laboratory supplies, extraction, and PCR kits currently in short supply.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Diagnostic Tests, Routine/methods , Mass Screening/methods , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Specimen Handling/standards , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Infections/genetics , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
19.
Int J Mol Sci ; 20(15)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31387239

ABSTRACT

Colorectal cancer (CRC) is a high burden disease with several genes involved in tumor progression. The aim of the present study was to identify, generate and clinically validate a novel gene signature to improve prediction of overall survival (OS) to effectively manage colorectal cancer. We explored The Cancer Genome Atlas (TCGA), COAD and READ datasets (597 samples) from The Protein Atlas (TPA) database to extract a total of 595 candidate genes. In parallel, we identified 29 genes with perturbations in > 6 cancers which are also affected in CRC. These genes were entered in cBioportal to generate a 17 gene panel with highest perturbations. For clinical validation, this gene panel was tested on the FFPE tissues of colorectal cancer patients (88 patients) using Nanostring analysis. Using multivariate analysis, a high prognostic score (composite 4 gene signature-DPP7/2, YWHAB, MCM4 and FBXO46) was found to be a significant predictor of poor prognosis in CRC patients (HR: 3.42, 95% CI: 1.71-7.94, p < 0.001 *) along with stage (HR: 4.56, 95% CI: 1.35-19.15, p = 0.01 *). The Kaplan-Meier analysis also segregated patients on the basis of prognostic score (log-rank test, p = 0.001 *). The external validation using GEO dataset (GSE38832, 122 patients) corroborated the prognostic score (HR: 2.7, 95% CI: 1.99-3.73, p < 0.001 *). Additionally, higher score was able to differentiate stage II and III patients (130 patients) on the basis of OS (HR: 2.5, 95% CI: 1.78-3.63, p < 0.001 *). Overall, our results identify a novel 4 gene prognostic signature that has clinical utility in colorectal cancer.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Transcriptome , Aged , Aged, 80 and over , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/therapy , Combined Modality Therapy , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Proportional Hazards Models , ROC Curve
20.
Am J Physiol Renal Physiol ; 317(2): F512-F517, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31188032

ABSTRACT

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease associated with high mortality worldwide. Increases in iron levels have been reported in diabetic rat kidneys as well as in human urine of patients with diabetes. In addition, a low-iron diet or iron chelators delay the progression of DN in patients with diabetes and in animal models of diabetes. Possible maladaptive mechanisms of organ damage by tissue iron accumulation have not been well studied. We recently reported that iron induced the retinal renin-angiotensin system (RAS) and accelerated the progression of diabetic retinopathy. However, whether iron regulates the systemic RAS is unknown. To explore if iron alters the expression of intrarenal RAS and its role in the progression of DN, we used the high Fe iron (HFE) knockout mouse, a genetic model of systemic iron overload. We found that diabetes upregulated the expression of iron regulatory proteins and augmented tissue iron accumulation in the kidneys of both type 1 and type 2 diabetic mouse models. Iron accumulation in the kidneys of HFE knockout mice was associated with increase in serum and intrarenal renin expression. Induction of diabetes in HFE knockout mice using streptozotocin caused a much higher accumulation of renal iron and accelerated the progression of nephropathy compared with diabetic wild-type mice. Treatment of diabetic mice with the iron chelator deferiprone reversed the renin upregulation and reduced kidney injury. Thus, our results establish a new link between renal iron and RAS activity. Exploring the mechanisms of iron-induced RAS activation further may have a significant therapeutic impact on hypertension and DN.


Subject(s)
Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Iron Overload/genetics , Iron Overload/metabolism , Iron/metabolism , Kidney/metabolism , Animals , Deferiprone/pharmacology , Deferiprone/therapeutic use , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Disease Progression , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Male , Mice , Mice, Knockout , Renin/biosynthesis , Renin-Angiotensin System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL