Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Br Dent J ; 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33303923

ABSTRACT

Introduction Virus particles in respiratory droplets and aerosols generated during medical/dental procedures are a potential source of SARS-CoV-2 cross infection. In the dental setting, oral decontamination could be an important adjunct to personal protective equipment and is recommended by a number of national COVID-19 guidance documents for dental settings.Aim To assess the in vitrovirucidal activity of an oral povidone iodine (PVP-I) product against SARS-CoV-2.Material and methods BETADINE gargle and mouthwash (1% PVP-I) was tested against SARS-CoV-2 virus under both clean and dirty conditions using a suspension assay based on EN14476 methodology. Virucidal activity of the product, undiluted and at 1:2 dilution, was tested at contact times of 15, 30 and 60 seconds. Viral titres were calculated using the Spearman-Kärber method and reported as median tissue culture infectious dose (TCID50/ml).Results The undiluted product achieved >5 log10 reduction in viral titres compared to the control at 15, 30 and 60 seconds under both clean and dirty conditions. At a twofold dilution (0.5% PVP-I), the test product demonstrated >4 log10 kill at 15 seconds and >5 log10 kill at 30 and 60 seconds in both clean and dirty conditions.Conclusion PVP-I gargle and mouthwash product, undiluted and at 1:2 dilution, demonstrated potent and rapid virucidal activity (≥4 log10 reduction of viral titre) in 15 seconds against SARS-CoV-2 in vitro. The PVP-I gargle and mouthwash product is widely available and could be readily integrated into infection control measures during dental treatment including pre-procedural oral decontamination.

2.
Infect Dis Ther ; 9(3): 669-675, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32643111

ABSTRACT

INTRODUCTION: As of 22 June 2020, Severe Acute Respiratory Syndrome (SARS)-coronavirus (CoV)-2 has infected more than 8.95 million people worldwide, causing > 468,000 deaths. The virus is transmitted through respiratory droplets and physical contact from contaminated surfaces to the mucosa. Hand hygiene and oral decontamination among other measures are key to preventing the spread of the virus. We report the in vitro virucidal activity of topical and oral povidone-iodine (PVP-I) products against SARS-CoV-2. METHODS: Suspension assays were used to assess the virucidal activity of PVP-I against SARS-CoV-2. Products were tested at a contact time of 30 s for virucidal activity. Viral titres were calculated using the Spearman-Kärber method and reported as median tissue culture infectious dose (TCID50)/mL. RESULTS: All four products [antiseptic solution (PVP-I 10%), skin cleanser (PVP-I 7.5%), gargle and mouth wash (PVP-I 1%) and throat spray (PVP-I 0.45%)] achieved ≥ 99.99% virucidal activity against SARS-CoV-2, corresponding to ≥ 4 log10 reduction of virus titre, within 30 s of contact. CONCLUSION: This study provides evidence of rapid and effective virucidal activity of PVP-I against SARS-CoV-2. PVP-I-based products are widely available for medical and personal use for hand hygiene and oral decontamination, and could be readily integrated into coronavirus disease, COVID-19, infection control measures in hospital and community settings.

3.
Microorganisms ; 8(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492796

ABSTRACT

The discovery of novel anti-leishmanial compounds remains essential as current treatments have known limitations and there are insufficient novel compounds in development. We have investigated three complex and physiologically relevant in vitro assays, including: (i) a media perfusion based cell culture model, (ii) two 3D cell culture models, and (iii) iPSC derived macrophages in place of primary macrophages or cell lines, to determine whether they offer improved approaches to anti-leishmanial drug discovery and development. Using a Leishmania major amastigote-macrophage assay the activities of standard drugs were investigated to show the effect of changing parameters in these assays. We determined that drug activity was reduced by media perfusion (EC50 values for amphotericin B shifted from 54 (51-57) nM in the static system to 70 (61-75) nM under media perfusion; EC50 values for miltefosine shifted from 12 (11-15) µM in the static system to 30 (26-34) µM under media perfusion) (mean and 95% confidence intervals), with corresponding reduced drug accumulation by macrophages. In the 3D cell culture model there was a significant difference in the EC50 values of amphotericin B but not miltefosine (EC50 values for amphotericin B were 34.9 (31.4-38.6) nM in the 2D and 52.3 (46.6-58.7) nM in 3D; EC50 values for miltefosine were 5.0 (4.9-5.2) µM in 2D and 5.9 (5.5-6.2) µM in 3D (mean and 95% confidence intervals). Finally, in experiments using iPSC derived macrophages infected with Leishmania, reported here for the first time, we observed a higher level of intracellular infection in iPSC derived macrophages compared to the other macrophage types for four different species of Leishmania studied. For L. major with an initial infection ratio of 0.5 parasites per host cell the percentage infection level of the macrophages after 72 h was 11.3% ± 1.5%, 46.0% ± 1.4%, 66.4% ± 3.5% and 75.1% ± 2.4% (average ± SD) for the four cells types, THP1 a human monocytic cell line, mouse bone marrow macrophages (MBMMs), human bone marrow macrophages (HBMMs) and iPSC derived macrophages respectively. Despite the higher infection levels, drug activity in iPSC derived macrophages was similar to that in other macrophage types, for example, amphotericin B EC50 values were 35.9 (33.4-38.5), 33.5 (31.5-36.5), 33.6 (30.5-not calculated (NC)) and 46.4 (45.8-47.2) nM in iPSC, MBMMs, HBMMs and THP1 cells respectively (mean and 95% confidence intervals). We conclude that increasing the complexity of cellular assays does impact upon anti-leishmanial drug activities but not sufficiently to replace the current model used in HTS/HCS assays in drug discovery programmes. The impact of media perfusion on drug activities and the use of iPSC macrophages do, however, deserve further investigation.

4.
ACS Omega ; 4(9): 13902-13912, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31497708

ABSTRACT

The clinical use of some drugs, such as carbamazepine, phenytoin, and allopurinol, is often associated with adverse cutaneous reactions. The bioactivation of drugs into immunologically reactive metabolites by the liver is postulated to be the first step in initiating a downstream cascade of pathological immune responses. Current mechanistic understanding and the ability to predict such adverse drug cutaneous responses have been partly limited by the lack of appropriate cutaneous drug bioactivation experimental models. Although in vitro human liver models have been extensively investigated for predicting hepatotoxicity and drug-drug interactions, their ability to model the generation of antigenic reactive drug metabolites that are capable of eliciting immunological reactions is not well understood. Here, we employed a human progenitor cell (HepaRG)-derived hepatocyte model and established highly sensitive liquid chromatography-mass spectrometry analytical assays to generate and quantify different reactive metabolite species of three paradigm skin sensitizers, namely, carbamazepine, phenytoin, and allopurinol. We found that the generation of reactive drug metabolites by the HepaRG-hepatocytes was sensitive to the medium composition. In addition, a functional assay based on the activation of U937 myeloid cells into the antigen-presenting cell (APC) phenotype was established to evaluate the immunogenicity potential of the reactive drug metabolites produced by HepaRG-derived hepatocytes. We showed that the reactive drug metabolites of known skin sensitizers could significantly upregulate IL8, IL1ß, and CD86 expressions in U937 cells compared to the metabolites from a nonskin sensitizer (i.e., acetaminophen). Thus, the extent of APC activation by HepaRG-hepatocytes conditioned medium containing reactive drug metabolites can potentially be used to predict their skin sensitization potential.

5.
Wound Repair Regen ; 27(6): 715-719, 2019 11.
Article in English | MEDLINE | ID: mdl-31276613

ABSTRACT

Evaluating interactions between dressing and wound is important for understanding wound management. This study quantitatively compared four polyurethane foam-based wound dressings for their absorption profile, cell penetration, and adherence using two novel in vitro assays. The dressing with uniform pore sizes varying from 25~75 µm showed the highest absorption of both culture media and serum. The same dressing showed a 1.2- to 3.6-fold lower cell adherence (3 hours) than the other dressings, and ~20-fold lower cell penetration (5 days) than dressings with pore sizes varying from 55 to 343 µm. Additionally, cell and dressing interactions using a 3-dimensional wound healing assay showed that the dressings with the smallest pore size of 25~75 µm maintained the highest cell viability (76.3%) and promoted cell migration into the wound site. This data suggest that polyurethane foam dressing with smaller and evenly distributed pores promotes wound healing with less cellular adhesion and penetration.


Subject(s)
Bandages , Polyurethanes/pharmacology , Skin Absorption/drug effects , Wound Healing/drug effects , Wounds and Injuries/therapy , Analysis of Variance , Bandages, Hydrocolloid , Cell Adhesion/physiology , Cell Survival/physiology , Cells, Cultured , Coculture Techniques , Culture Media , Evaluation Studies as Topic , Humans , In Vitro Techniques , Wounds and Injuries/physiopathology
6.
Biomaterials ; 216: 119221, 2019 09.
Article in English | MEDLINE | ID: mdl-31195301

ABSTRACT

Hypnozoites are the liver stage non-dividing form of the malaria parasite that are responsible for relapse and acts as a natural reservoir for human malaria Plasmodium vivax and P. ovale as well as a phylogenetically related simian malaria P. cynomolgi. Our understanding of hypnozoite biology remains limited due to the technical challenge of requiring the use of primary hepatocytes and the lack of robust and predictive in vitro models. In this study, we developed a malaria liver stage model using 3D spheroid-cultured primary hepatocytes. The infection of primary hepatocytes in suspension led to increased infectivity of both P. cynomolgi and P. vivax infections. We demonstrated that this hepatic spheroid model was capable of maintaining long term viability, hepatocyte specific functions and cell polarity which enhanced permissiveness and thus, permitting for the complete development of both P. cynomolgi and P. vivax liver stage parasites in the infected spheroids. The model described here was able to capture the full liver stage cycle starting with sporozoites and ending in the release of hepatic merozoites capable of invading simian erythrocytes in vitro. Finally, we showed that this system can be used for compound screening to discriminate between causal prophylactic and cidal antimalarials activity in vitro for relapsing malaria.


Subject(s)
Antimalarials/pharmacology , Hepatocytes/parasitology , Malaria/drug therapy , Plasmodium/drug effects , Animals , Cell Culture Techniques/methods , Cell Line , Cells, Cultured , Hepatocytes/cytology , Humans , Liver/cytology , Liver/parasitology , Macaca fascicularis , Macaca mulatta , Parasitic Sensitivity Tests/methods , Recurrence , Secondary Prevention , Spheroids, Cellular/cytology , Spheroids, Cellular/parasitology , Sporozoites/drug effects
7.
Biomaterials ; 201: 16-32, 2019 05.
Article in English | MEDLINE | ID: mdl-30784769

ABSTRACT

Interconnected macroporous hydrogel is hydrophilic; it exhibits soft tissue-like mechanical property and aqueous-stable macroporosity for 3D spheroid culture. There is an unmet need to develop cleavable macroporous hydrogel, for the ease of retrieving functional spheroids for further in vitro and in vivo applications. We have developed and comprehensively characterized a hydroxypropyl-cellulose-disulfide sponge by systematically identifying strategies and synthesis schemes to confer cleavability to the sponge under cell-friendly conditions. It preserved the essential advantages of the macroporous hydrogel to support 3D spheroid formation and maintenance of sensitive hepatocytes while allowing rapid cleavage and retrieval of functional spheroids. By culturing HepaRG as spheroids in the cleavable sponge, we have accelerated HepaRG differentiation to 9 days compared to 28 days in 2D culture. Cytochrome P450 basal activity reached significantly higher level, while albumin secretion and fluorescein diacetate staining indicated the same at day 5. The purity of albumin+ hepatocytes reached 92.9% versus 7.1% of CK19+ cholangiocytes at day 9, a much stronger preference for hepatocytes than the 60% albumin+ hepatocytes purity in 2D culture. HepaRG differentiated hepatocytes were retrieved by cleaving the sponge with 10 mM tris-(2-carboxyethyl)-phosphine (TCEP) within 30 min preserving viability, plateability and positive albumin staining of the hepatocyte spheroids. This cleavable macroporous hydrogel sponge will support the rapid development of various 3D spheroid- or organoid-based applications in basic research and drug testing.


Subject(s)
Hepatocytes/cytology , Hydrogels/chemistry , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Cells, Cultured , Hepatocytes/ultrastructure , Humans , Male , Microscopy, Electron, Scanning , Molecular Structure , Photoelectron Spectroscopy , Rats , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Spheroids, Cellular/cytology
8.
Sci Rep ; 8(1): 2818, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434311

ABSTRACT

Shortage of functional hepatocytes hampers drug safety testing and therapeutic applications because mature hepatocytes cannot be expanded and maintain functions in vitro. Recent studies have reported that liver progenitor cells can originate from mature hepatocytes in vivo. Derivation of proliferating progenitor cells from mature hepatocytes, and re-differentiation into functional hepatocytes in vitro has not been successful. Here we report the derivation of novel mesenchymal-like stem cells (arHMSCs) from adult rat hepatocytes. Immunofluorescence and flow cytometry characterization of arHMSCs found expression of mesenchymal markers CD29, CD44, CD90, vimentin and alpha smooth muscle actin. These arHMSCs proliferated in vitro for 4 passages yielding 104 fold increase in cell number in 28 days, and differentiated into hepatocyte-like cells (arHMSC-H). The arHMSC-H expressed significantly higher level of hepatocyte-specific markers (200 fold for albumin and 6 fold for Cyp450 enzymes) than arHMSCs. The arHMSC-H also demonstrated dose response curves similar to primary hepatocytes for 3 of the 6 paradigm hepatotoxicants tested, demonstrating utility in drug safety testing applications.


Subject(s)
Cell Culture Techniques/methods , Hepatocytes/metabolism , Liver/metabolism , Animals , Biomarkers/metabolism , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Flow Cytometry , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Rats , Rats, Wistar , Stem Cells/cytology
9.
Toxicol In Vitro ; 50: 47-53, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29366910

ABSTRACT

Co-culture of hepatocyte and fibroblasts has shown distinct advantages in enhancing certain liver specific functions and maintaining hepatic polarity. However, the utility of hepatocyte co-culture models for studies, such as drug-drug interaction studies, has not been completely elucidated. In this study the induction of Cyp1a2, Cyp2b1/2, and Cyp3a2, the three major cytochrome P450 (CYP) isoforms in the rat liver, was evaluated in randomly mixed co-cultures and micropatterned co-cultures. We found that in both co-culture configurations, the drug-induced Cyp1a2, Cyp2b1/2, Cyp3a2 mRNA and activity were suppressed relative to those in monocultured hepatocytes. Further, we observed a significant increase in TGFß1 production in the co-cultures. Addition of 100 pg/ml TGFß1 to hepatocyte monocultures resulted in the suppression of Cyp1a2, Cyp2b1/2, and Cyp3a2 induction. These findings implicate TGFß1 as one of the important factors impairing drug induced CYP induction in co-cultures and suggests that caution needs to be exercised in the use of hepatocyte-fibroblast co-cultures for CYP induction studies.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Enzyme Induction , Fibroblasts/metabolism , Hepatocytes/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Cells, Cultured , Coculture Techniques , Cytochrome P-450 Enzyme Inducers/pharmacology , Cytochrome P-450 Enzyme System/genetics , Male , Mice , NIH 3T3 Cells , Rats, Wistar
10.
Biotechnol Bioeng ; 114(10): 2360-2370, 2017 10.
Article in English | MEDLINE | ID: mdl-28542705

ABSTRACT

The practical application of microfluidic liver models for in vitro drug testing is partly hampered by their reliance on human primary hepatocytes, which are limited in number and have batch-to-batch variation. Human stem cell-derived hepatocytes offer an attractive alternative cell source, although their 3D differentiation and maturation in a microfluidic platform have not yet been demonstrated. We develop a pump-free microfluidic 3D perfusion platform to achieve long-term and efficient differentiation of human liver progenitor cells into hepatocyte-like cells (HLCs). The device contains a micropillar array to immobilize cells three-dimensionally in a central cell culture compartment flanked by two side perfusion channels. Constant pump-free medium perfusion is accomplished by controlling the differential heights of horizontally orientated inlet and outlet media reservoirs. Computational fluid dynamic simulation is used to estimate the hydrostatic pressure heads required to achieve different perfusion flow rates, which are experimentally validated by micro-particle image velocimetry, as well as viability and functional assessments in a primary rat hepatocyte model. We perform on-chip differentiation of HepaRG, a human bipotent progenitor cell, and discover that 3D microperfusion greatly enhances the hepatocyte differentiation efficiency over static 2D and 3D cultures. However, HepaRG progenitor cells are highly sensitive to the time-point at which microperfusion is applied. Isolated HepaRG cells that are primed as static 3D spheroids before being subjected to microperfusion yield a significantly higher proportion of HLCs (92%) than direct microperfusion of isolated HepaRG cells (62%). This platform potentially offers a simple and efficient means to develop highly functional microfluidic liver models incorporating human stem cell-derived HLCs. Biotechnol. Bioeng. 2017;114: 2360-2370. © 2017 Wiley Periodicals, Inc.


Subject(s)
Batch Cell Culture Techniques/instrumentation , Cell Differentiation/physiology , Hepatocytes/physiology , Lab-On-A-Chip Devices , Organ Culture Techniques/instrumentation , Perfusion/instrumentation , Stem Cells/physiology , Batch Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Proliferation/physiology , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Hepatocytes/cytology , Humans , Organ Culture Techniques/methods , Stem Cells/cytology , Tissue Engineering/instrumentation , Tissue Engineering/methods
11.
Mol Pharm ; 13(6): 1947-57, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27157693

ABSTRACT

Pluripotent stem cell derived hepatocyte-like cells (hPSC-HLCs) are an attractive alternative to primary human hepatocytes (PHHs) used in applications ranging from therapeutics to drug safety testing studies. It would be critical to improve and maintain mature hepatocyte functions of the hPSC-HLCs, especially for long-term studies. If 3D culture systems were to be used for such purposes, it would be important that the system can support formation and maintenance of optimal-sized spheroids for long periods of time, and can also be directly deployed in liver drug testing assays. We report the use of 3-dimensional (3D) cellulosic scaffold system for the culture of hPSC-HLCs. The scaffold has a macroporous network which helps to control the formation and maintenance of the spheroids for weeks. Our results show that culturing hPSC-HLCs in 3D cellulosic scaffolds increases functionality, as demonstrated by improved urea production and hepatic marker expression. In addition, hPSC-HLCs in the scaffolds exhibit a more mature phenotype, as shown by enhanced cytochrome P450 activity and induction. This enables the system to show a higher sensitivity to hepatotoxicants and a higher degree of similarity to PHHs when compared to conventional 2D systems. These results suggest that 3D cellulosic scaffolds are ideal for the long-term cultures needed to mature hPSC-HLCs. The mature hPSC-HLCs with improved cellular function can be continually maintained in the scaffolds and directly used for hepatotoxicity assays, making this system highly attractive for drug testing applications.


Subject(s)
Cellulose/metabolism , Hepatocytes/physiology , Pluripotent Stem Cells/physiology , Animals , Biomarkers/metabolism , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Line , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/physiology , Pluripotent Stem Cells/metabolism
12.
Mol Pharm ; 11(7): 2106-14, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24761996

ABSTRACT

Developing effective new drugs against hepatitis C (HCV) virus has been challenging due to the lack of appropriate small animal and in vitro models recapitulating the entire life cycle of the virus. Current in vitro models fail to recapitulate the complexity of human liver physiology. Here we present a method to study HCV infection and replication on spheroid cultures of Huh 7.5 cells and primary human hepatocytes. Spheroid cultures are constructed using a galactosylated cellulosic sponge with homogeneous macroporosity, enabling the formation and maintenance of uniformly sized spheroids. This facilitates easy handling of the tissue-engineered constructs and overcomes limitations inherent of traditional spheroid cultures. Spheroids formed in the galactosylated cellulosic sponge show enhanced hepatic functions in Huh 7.5 cells and maintain liver-specific functions of primary human hepatocytes for 2 weeks in culture. Establishment of apical and basolateral polarity along with the expression and localization of all HCV specific entry proteins allow for a 9-fold increase in viral entry in spheroid cultures over conventional monolayer cultures. Huh 7.5 cells cultured in the galactosylated cellulosic sponge also support replication of the HCV clone, JFH (Japanese fulminant hepatitis)-1 at higher levels than in monolayer cultures. The advantages of our system in maintaining liver-specific functions and allowing HCV infection together with its ease of handling make it suitable for the study of HCV biology in basic research and pharmaceutical R&D.


Subject(s)
Cell Culture Techniques/methods , Hepacivirus/genetics , Hepatitis C/virology , Hepatocytes/virology , Spheroids, Cellular/virology , Tissue Engineering/methods , Virus Replication/genetics , Biocompatible Materials/metabolism , Cell Line, Tumor , Cells, Cultured , Cellulose/metabolism , Galactose/metabolism , Hepatitis C/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/virology , Spheroids, Cellular/metabolism
13.
Biomaterials ; 33(7): 2165-76, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22189144

ABSTRACT

Hepatocyte spheroids mimic many in vivo liver-tissue phenotypes but increase in size during extended culture which limits their application in drug testing applications. We have developed an improved hepatocyte 3D spheroid model, namely tethered spheroids, on RGD and galactose-conjugated membranes using an optimized hybrid ratio of the two bioactive ligands. Cells in the spheroid configuration maintained 3D morphology and uncompromised differentiated hepatocyte functions (urea and albumin production), while the spheroid bottom was firmly tethered to the substratum maintaining the spheroid size in multi-well plates. The oblate shape of the tethered spheroids, with an average height of 32 µm, ensured efficient nutrient, oxygen and drug access to all the cells within the spheroid structure. Cytochrome P450 induction by prototypical inducers was demonstrated in the tethered spheroids and was comparable or better than that observed with hepatocyte sandwich cultures. These data suggested that tethered 3D hepatocyte spheroids may be an excellent alternative to 2D hepatocyte culture models for drug safety applications.


Subject(s)
Drug Evaluation, Preclinical/methods , Hepatocytes/cytology , Models, Biological , Spheroids, Cellular/physiology , Animals , Cells, Cultured , Collagen/metabolism , Hepatocytes/physiology , Humans , Male , Rats , Rats, Wistar , Spheroids, Cellular/cytology
14.
Biomaterials ; 32(4): 1229-41, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20971505

ABSTRACT

Hepatotoxicity evaluation of pharmaceutical lead compounds in early stages of drug development has drawn increasing attention. Sandwiched hepatocytes exhibiting stable functions in culture represent a standard model for hepatotoxicity testing of drugs. We have developed a robust and high-throughput hepatotoxicity testing platform based on the sandwiched hepatocytes for drug screening. The platform involves a galactosylated microfabricated membrane sandwich to support cellular function through uniform and efficient mass transfer while protecting cells from excessive shear. Perfusion bioreactor further enhances mass transfer and cellular functions over long period; and hepatocytes are readily transferred to 96-well plate for high-throughput robotic liquid handling. The bioreactor design and perfusion flow rate are optimized by computational fluid dynamics simulation and experimentally. The cultured hepatocytes preserved 3D cell morphology, urea production and cytochrome p450 activity of the mature hepatocytes for 14 days. When the perfusion-cultured sandwich is transferred to 96-well plate for drug testing, the hepatocytes exhibited improved drug sensitivity and low variability in hepatotoxicity responses amongst cells transferred from different dates of perfusion culture. The platform enables robust high-throughput screening of drug candidates.


Subject(s)
Drug Evaluation, Preclinical/methods , Hepatocytes/drug effects , Hepatocytes/metabolism , High-Throughput Screening Assays/methods , Pharmaceutical Preparations/chemistry , Animals , Cells, Cultured , Hepatocytes/cytology , High-Throughput Screening Assays/instrumentation , Male , Rats , Rats, Wistar
15.
Trends Biotechnol ; 29(3): 110-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21129798

ABSTRACT

Bottom-up engineering of microscale tissue ("microtissue") constructs to recapitulate partially the complex structure-function relationships of liver parenchyma has been realized through the development of sophisticated biomaterial scaffolds, liver-cell sources, and in vitro culture techniques. With regard to in vivo applications, the long-lived stem/progenitor cell constructs can improve cell engraftment, whereas the short-lived, but highly functional hepatocyte constructs stimulate host liver regeneration. With regard to in vitro applications, microtissue constructs are being adapted or custom-engineered into cell-based assays for testing acute, chronic and idiosyncratic toxicities of drugs or pathogens. Systems-level methods and computational models that represent quantitative relationships between biomaterial scaffolds, cells and microtissue constructs will further enable their rational design for optimal integration into specific biomedical applications.


Subject(s)
Liver/cytology , Tissue Engineering , Animals , Biocompatible Materials , Embryonic Stem Cells/cytology , Hepatocytes/physiology , Humans , Liver/physiology , Liver Regeneration , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...