Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 15(48): e1901555, 2019 11.
Article in English | MEDLINE | ID: mdl-31112374

ABSTRACT

A reliable method to prepare a surface-enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect-engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single-layer graphene. This defect-engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface. The Raman data, along with X-ray photoelectron spectroscopy and analysis of the water contact angle are used to rationalize the functionalization of the graphene layer. It is found that Au NPs functionalization of the "defect-engineered" graphene substrates permits detection of concentrations as low as 10-16 m for the probe molecule Rhodamine B, which offers an outstanding molecular sensing ability. Interestingly, a Raman signal enhancement of up to ≈108 is achieved. Moreover, it is observed that GR effectively quenches the fluorescence background from the Au NPs and molecules due to the strong resonance energy transfer between Au NPs and GR. The results presented offer significant direction for the design and fabrication of ultra-sensitive SERS platforms, and also open up possibilities for novel applications of defect engineered graphene in biosensors, catalysis, and optoelectronic devices.

2.
J Colloid Interface Sci ; 514: 452-458, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29289029

ABSTRACT

Room temperature quantized double layer charging was observed in 2 nm Cu2ZnSnS4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor.

3.
Sci Rep ; 6: 35369, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27748406

ABSTRACT

Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations. Moreover, secondary phases are not observed and grain sizes are enhanced significantly with selenium doping (grain size ~1 µm). The earth-abundant Cu2MSnS4/Se4 (M = Zn, Mn and Fe) nanoparticles have band gaps in the range of 1.04-1.51 eV with high optical-absorption coefficients (~104 cm-1) in the visible region. The power conversion efficiency of a CZTS solar cell is enhanced significantly, from 0.4% to 7.4% with selenium doping, within an active area of 1.1 ± 0.1 cm2. The observed changes in the device performance parameters might be ascribed to the variation of optical band gap and microstructure of the thin films. The performance of the device is at par with sputtered fabricated films, at similar scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...