Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 14(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39056596

ABSTRACT

The development of low-cost, sensitive, and simple analytical tools for biomolecule detection in health status monitoring is nowadays a growing research topic. Sensing platforms integrating nanocomposite materials as recognition elements in the monitoring of various biomolecules and biomarkers are addressing this challenging objective. Herein, we have developed electrochemical sensing platforms by means of a novel fabrication procedure for biomolecule detection. The platforms are based on commercially available low-cost conductive substrates like glassy carbon and/or screen-printed carbon electrodes selectively functionalized with nanocomposite materials composed of Ag and Au metallic nanoparticles and an organic polymer, poly(3,4-ethylenedioxythiophene). The novel fabrication method made use of alternating currents with controlled amplitude and frequency. The frequency of the applied alternating current was 100 mHz for the polymer deposition, while a frequency value of 50 mHz was used for the in situ electrodeposition of Ag and Au nanoparticles. The selected frequency values ensured the successful preparation of the composite materials. The use of readily available composite materials is intended to produce cost-effective analytical tools. The judicious modification of the organic conductive matrix by various metallic nanoparticles, such as Ag and Au, extends the potential applications of the sensing platform toward a range of biomolecules like quercetin and epinephrine, chosen as benchmark analytes for proof-of-concept antioxidant and neurotransmitter detection. The sensing platforms were tested successfully for quercetin and epinephrine determination on synthetic and real samples. Wide linear response ranges and low limit-of-detection values were obtained for epinephrine and quercetin detection.


Subject(s)
Biosensing Techniques , Bridged Bicyclo Compounds, Heterocyclic , Electrochemical Techniques , Epinephrine , Gold , Metal Nanoparticles , Nanocomposites , Polymers , Quercetin , Quercetin/analysis , Epinephrine/analysis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Gold/chemistry , Nanocomposites/chemistry , Humans , Silver/chemistry , Electrodes
2.
Heliyon ; 10(12): e33162, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021978

ABSTRACT

Recent advancements in the formulation of solid dosage forms involving active ingredient-cyclodextrin complexes have garnered considerable attention in pharmaceutical research. While previous studies predominantly focused on incorporating these complexes into solid states, issues regarding incomplete inclusion prompted the exploration of novel methods. In this study, we aimed to develop an innovative approach to integrate liquid-state drug-cyclodextrin inclusion complexes into solid dosage forms. Our investigation centered on rivaroxaban, a hydrophobic compound practically insoluble in water, included in hydroxypropyl-ß-cyclodextrin at a 1:1 M ratio, and maintained in a liquid state. To enhance viscosity, hydroxypropyl-cellulose (2 % w/w) was introduced, and the resulting dispersion was sprayed onto the surface of cellulose pellets (CELLETS®780) using a Caleva Mini Coater. The process parameters were meticulously controlled, with atomization air pressure set at 1.1 atm and a fluidizing airflow maintained at 35-45 m3/h. Characterization of the coated cellets, alongside raw materials, was conducted using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) analyses. Physicochemical evaluations affirmed the successful incorporation of rivaroxaban into hydroxypropyl-ß-cyclodextrin, with the final cellets demonstrating excellent flowability, compressibility, and adequate hardness. Quantitative analysis via the HPLC-DAD method confirmed a drug loading of 10 mg rivaroxaban/750 mg coated cellets. In vitro dissolution studies were performed in two distinct media: 0.022 M sodium acetate buffer pH 4.5 with 0.2 % sodium dodecyl sulfate (mirroring compendial conditions for 10 mg rivaroxaban tablets), and 0.05 M phosphate buffer pH 6.8 without surfactants, compared to reference capsules and conventional tablet formulations. The experimental capsules exhibited similar release profiles to the commercial product, Xarelto® 10 mg, with enhanced dissolution rates observed within the initial 10 min. This research presents a significant advancement in the development of solid dosage forms incorporating liquid-state drug-cyclodextrin inclusion complexes, offering a promising avenue for improving drug delivery and bioavailability.

3.
Polymers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794552

ABSTRACT

Nanotechnology is one of the newest directions for plant-based therapies. Chronic venous disease often predisposes to long-term and invasive treatment. This research focused on the inclusion of vegetal extracts from Sophorae flos (SE), Calendulae flos (CE), and Ginkgo bilobae folium (GE) in formulations with PHB and PLGA polymers and their physicochemical characterization as a preliminary stage for possible use in the development of a complex therapeutic product. The samples were prepared by an oil-water emulsification and solvent evaporation technique, resulting in suspensions with high spreadability and a pH of 5.5. ATR-FTIR analysis revealed bands for stretching vibrations (O-H, C=O, and C-H in symmetric and asymmetric methyl and methylene) in the same regions as the base components, but switched to high or low wavenumbers and absorbance, highlighting the formation of adducts/complexes between the extracts and polymers. The obtained formulations were in the amorphous phase, as confirmed by XRD analysis. AFM analysis emphasized the morphological peculiarities of the extract-polymer nanoformulations. It could be noticed that, in the case of SE-based formulations, the dominant characteristics for SE-PHB and SE-PLGA composition were the formation of random large (SE-PHB) and smaller uniform (SE-PLGA) particles; further on, these particles tended to aggregate in the case of SE-PHB-PLGA. For the CE- and GE-based formulations, the dominant surface morphology was their porosity, generally with small pores, but larger cavities were observed in some cases (CE- and GE-PHB). The highest roughness values at the (8 µm × 8 µm) scale were found for the following samples and succession: CE-PHB < SE-PLGA < SE-PHB-PLGA. In addition, by thermogravimetric analysis, impregnation in the matrix of compression stockings was evaluated, which varied in the following order: CE-polymer > SE-polymer > GE-polymer. In conclusion, nine vegetal extract-polymer nanoformulations were prepared and preliminarily characterized (by advanced physicochemical methods) as a starting point for further optimization, stability studies, and possible use in complex pharmaceutical products.

4.
Gels ; 9(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37998950

ABSTRACT

Photocatalytic coatings are difficult to obtain on textile materials because of the sometimes contradictory properties that must be achieved. In order to obtain a high efficiency of a photocatalytic effect, the metal-oxide semiconductor must be found in the vicinity of the coating-air interface in order to come into direct contact with the contaminant species and allow light radiation access to its surface. Another necessary condition is related to the properties of the covering textile material as well as to the stability of the xerogel films to light and wet treatments. In this sense, we proposed a solution based on hybrid silica films generated by sol-gel processes, coatings that contain as a photocatalyst TiO2 sensitized with tetracarboxylic acid of iron (III) phthalocyanine (FeTCPc). The coatings were made by the pad-dry-cure process, using in the composition a bifunctional anchoring agent (3-glycidoxipropyltrimethoxysilane, GLYMO), a crosslinking agent (sodium tetraborate, BORAX), and a catalyst (N-methylimidazole, MIM) for the polymerization of epoxy groups. The photodegradation experiments performed on methylene blue (MB), utilized as a model contaminant, using LED or xenon arc as light sources, showed that the treatment with BORAX improves the resistance of the coatings to wet treatments but worsens their photocatalytic performances.

5.
Gels ; 9(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37623105

ABSTRACT

Nanostructured oxides (SiO2, TiO2) were synthesized using the sol-gel method and modified with noble metal nanoparticles (Pt, Au) and ruthenium dye to enhance light harvesting and promote the photogeneration of reactive oxygen species, namely singlet oxygen (1O2) and hydroxyl radical (•OH). The resulting nanostructures were embedded in a transparent polyvinyl alcohol (PVA) hydrogel. Morphological and structural characterization of the bare and modified oxides was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-Vis spectroscopy, and X-ray photoelectron spectroscopy (XPS). Additionally, electrokinetic potential measurements were conducted. Crystallinity data and elemental analysis of the investigated systems were obtained through X-ray diffraction and X-ray fluorescence analyses, while the chemical state of the elements was determined using XPS. The engineered materials, both as simple powders and embedded in the hydrogel, were evaluated for their ability to generate reactive oxygen species (ROS) under visible and simulated solar light irradiation to establish a correlation with their antibacterial activity against Staphylococcus aureus. The generation of singlet oxygen (1O2) by the samples under visible light exposure can be of significant importance for their potential use in biomedical applications.

6.
Gels ; 9(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37232947

ABSTRACT

Detection of greenhouse gases is essential because harmful gases in the air diffuse rapidly over large areas in a short period of time, causing air pollution that will induce climate change with catastrophic consequences over time. Among the materials with favorable morphologies for gas detection (nanofibers, nanorods, nanosheets), large specific surfaces, high sensitivity and low production costs, we chose nanostructured porous films of In2O3 obtained by the sol-gel method, deposited on alumina transducers, with gold (Au) interdigitated electrodes (IDE) and platinum (Pt) heating circuits. Sensitive films contained 10 deposited layers, involving intermediate and final thermal treatments to stabilize the sensitive film. The fabricated sensor was characterized using AFM, SEM, EDX and XRD. The film morphology is complex, containing fibrillar formations and some quasi-spherical conglomerates. The deposited sensitive films are rough, thus favoring gas adsorption. Ozone sensing tests were performed at different temperatures. The highest response of the ozone sensor was recorded at room temperature, considered to be the working temperature for this specific sensor.

7.
Materials (Basel) ; 16(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37176212

ABSTRACT

ZnO and Al-doped ZnO (AZO) thin films were prepared using the sol-gel method and deposited on a Silicon (Si(100)) substrate using the dipping technique. The structure, morphology, thickness, optical constants in the spectral range 300-1700 nm, bandgap (Eg) and photoluminescence (PL) properties of the films were analyzed using X-ray diffractometry (XRD), X-ray fluorescence (XRF), atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), Raman analysis and PL spectroscopy. The results of the structure and morphology analyses showed that the thin films are polycrystalline with a hexagonal wurtzite structure, as well as continuous and homogeneous. The PL background and broader peaks observable in the Raman spectra of the AZO film and the slight increase in the optical band gap of the AZO thin film, compared to undoped ZnO, highlight the effect of defects introduced into the ZnO lattice and an increase in the charge carrier density in the AZO film. The PL emission spectra of the AZO thin film showed a strong UV line corresponding to near-band-edge ZnO emission along with weak green and red emission bands due to deep-level defects, attributed to the oxygen-occupied zinc vacancies (OZn lattice defects).

8.
Polymers (Basel) ; 15(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904552

ABSTRACT

The present research focuses on the physicochemical and pharmacotechnical properties of new hydrogels obtained using allantoin, xanthan gum, salicylic acid and different concentrations of Aloe vera (5, 10, 20% w/v in solution; 38, 56, 71 wt% in dry gels). The thermal behavior of Aloe vera composite hydrogels was studied using DSC and TG/DTG analyses. The chemical structure was investigated using different characterization methods (XRD, FTIR and Raman spectroscopies) and the morphology of the hydrogels was studied SEM and AFM microscopy. Pharmacotechnical evaluation on tensile strength and elongation, moisture content, swelling and spreadability was also completed. Physical evaluation confirmed that the appearance of the prepared Aloe vera based hydrogels was homogeneous and the color varied from pale beige to deep opaque beige with increasing Aloe vera concentration. All other evaluation parameters, e.g., pH, viscosity, spreadability and consistency were found to be adequate in all hydrogel formulations. SEM and AFM images show that the structure of the hydrogels condensed into homogeneous polymeric solids with the addition of Aloe vera, in accordance with the decrease in peak intensities observed via XRD analysis. These results suggest interactions between the hydrogel matrix and Aloe vera as observed via FTIR and TG/DTG and DSC analyses. Considering that Aloe vera content higher than 10% (w/v) did not stimulate further interactions, this formulation (FA-10) can be used for further biomedical applications.

9.
Antioxidants (Basel) ; 12(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36978939

ABSTRACT

ZnSe, ZnSe-TiO2 microspheres and nanostructured TiO2 obtained by hydrothermal and sol-gel methods were tested against Staphylococcus aureus ATCC 25923 and Micrococcus lysodeikticus ATCC 4698 before and after lysozyme (Lys) loading. Morphological characterization of inorganic matrices and hybrid organic-inorganic complexes were performed by microscopy techniques (SEM, AFM and Dark Field Hyperspectral Microscopy). Light absorption properties of ZnSe, ZnSe-TiO2 and TiO2 powders were assessed by UV-visible spectroscopy and their ability to generate reactive oxygen species (•OH and O2•-) under visible light irradiation was investigated. Antibacterial activity of ZnSe, ZnSe-TiO2, TiO2, Lys/ZnSe, Lys/ZnSe-TiO2 and Lys/TiO2 samples under exposure to visible light irradiation (λ > 420 nm) was tested against Staphylococcus aureus and Micrococcus lysodeikticus and correlated with ROS photogeneration.

10.
J Funct Biomater ; 14(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36826897

ABSTRACT

Mg is a material of choice for biodegradable implants. The main challenge for using Mg in temporary implants is to provide protective surfaces that mitigate its rapid degradation in biological fluids and also confer sufficient cytocompatibility and bacterial resistance to Mg-coated surfaces. Even though carbonate mineralization is the most important source of biominerals, such as the skeletons and shells of many marine organisms, there has been little success in the controlled growth of carbonate layers by synthetic processes. We present here the formation mechanism, antibacterial activity, and cell viability of magnesian calcite biomimetic coatings grown on biodegradable Mg via a green, one-step route. Cell compatibility assessment showed cell viability higher than 80% after 72 h using fibroblast cells (NCTC, clone L929) and higher than 60% after 72 h using human osteoblast-like cells (SaOS-2); the cells displayed a normal appearance and a density similar to the control sample. Antimicrobial potential evaluation against both Gram-positive (Staphylococcus aureus (ATCC 25923)) and Gram-negative (Pseudomonas aeruginosa (ATCC 27853)) strains demonstrated that the coated samples significantly inhibited bacterial adhesion and biofilm formation compared to the untreated control. Calcite coatings grown on biodegradable Mg by a single coating process showed the necessary properties of cell compatibility and bacterial resistance for application in surface-modified Mg biomaterials for temporary implants.

11.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38256895

ABSTRACT

In order to select for further development novel photosensitizers for photodynamic therapy in cutaneous disorders, three unsymmetrical porphyrins, namely 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.2), 5-(2-hydroxy-5-methoxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl) porphyrin (P3.2), and 5-(2,4-dihydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P4.2), along with their fully symmetrical counterparts 5,10,15,20-tetrakis-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.1) and 5,10,15,20-tetrakis-(4-carboxymethylphenyl) porphyrin (P3.1) were comparatively evaluated. The absorption and fluorescence properties, as well as atomic force microscopy measurements were performed to evaluate the photophysical characteristics as well as morphological and textural properties of the mentioned porphyrins. The cellular uptake of compounds and the effect of photodynamic therapy on the viability, proliferation, and necrosis of human HaCaT keratinocytes, human Hs27 skin fibroblasts, human skin SCL II squamous cell carcinoma, and B16F10 melanoma cells were assessed in vitro, in correlation with the structural and photophysical properties of the investigated porphyrins, and with the predictions regarding diffusion through cell membranes and ADMET properties. All samples were found to be isotropic and self-similar, with slightly different degrees of aggregability, had a relatively low predicted toxicity (class V), and a predicted long half-life after systemic administration. The in vitro study performed on non-malignant and malignant skin-relevant cells highlighted that the asymmetric P2.2 porphyrin qualified among the five investigated porphyrins to be a promising photosensitizer candidate for PDT in skin disorders. P2.2 was shown to accumulate well within cells, and induced by PDT a massive decrease in the number of metabolically active skin cells, partly due to cell death by necrosis. P2.2 had in this respect a better behavior than the symmetric P.2.1 compound and the related asymmetric compound P4.2. The strong action of P2.2-mediated PDT on normal skin cells might be an important drawback for further development of this compound. Meanwhile, the P3.1 and P3.2 compounds were not able to accumulate well in skin cells, and did not elicit significant PDT in vitro. Taken together, our experiments suggest that P2.2 can be a promising candidate for the development of novel photosensitizers for PDT in skin disorders.

12.
Int J Mol Sci ; 23(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36499160

ABSTRACT

Oxidative stress is associated with aging, cancers, and numerous metabolic and chronic disorders, and phenolic compounds are well known for their health-promoting role due to their free-radical scavenging activity. These phytochemicals could also exhibit pro-oxidant effects. Due to its bioactive phenolic secondary metabolites, Usnea barbata (L.) Weber ex. F.H. Wigg (U. barbata) displays anticancer and antioxidant activities and has been used as a phytomedicine for thousands of years. The present work aims to analyze the properties of U. barbata extract in canola oil (UBO). The UBO cytotoxicity on oral squamous cell carcinoma (OSCC) CLS-354 cell line and blood cell cultures was explored through complex flow cytometry analyses regarding apoptosis, reactive oxygen species (ROS) levels, the enzymatic activity of caspase 3/7, cell cycle, nuclear shrinkage (NS), autophagy (A), and synthesis of deoxyribonucleic acid (DNA). All these studies were concomitantly performed on canola oil (CNO) to evidence the interaction of lichen metabolites with the constituents of this green solvent used for extraction. The obtained data evidenced that UBO inhibited CLS-354 oral cancer cell proliferation through ROS generation (316.67 × 104), determining higher levels of nuclear shrinkage (40.12%), cell cycle arrest in G0/G1 (92.51%; G0 is the differentiation phase, while during G1 phase occurs preparation for cell division), DNA fragmentation (2.97%), and autophagy (62.98%) than in blood cells. At a substantially higher ROS level in blood cells (5250.00 × 104), the processes that lead to cell death-NS (30.05%), cell cycle arrest in G0/G1 (86.30%), DNA fragmentation (0.72%), and autophagy (39.37%)-are considerably lower than in CLS-354 oral cancer cells. Our work reveals the ROS-mediated anticancer potential of UBO through DNA damage and autophagy. Moreover, the present study suggests that UBO pharmacological potential could result from the synergism between lichen secondary metabolites and canola oil phytoconstituents.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Usnea , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Usnea/chemistry , Usnea/metabolism , Carcinoma, Squamous Cell/drug therapy , Squamous Cell Carcinoma of Head and Neck , Rapeseed Oil/pharmacology , Autophagy , DNA Damage , Reactive Oxygen Species/metabolism , Apoptosis , Plant Extracts/pharmacology , Phenols/pharmacology , DNA/pharmacology , Cell Line, Tumor
13.
Gels ; 8(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36354625

ABSTRACT

The aim of the present study was the development of Nb-doped ITO thin films for carbon monoxide (CO) sensing applications. The detection of CO is imperious because of its high toxicity, with long-term exposure having a negative impact on human health. Using a feasible sol-gel method, the doped ITO thin films were prepared at room temperature and deposited onto various substrates (Si, SiO2/glass, and glass). The structural, morphological, and optical characterization was performed by the following techniques: X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV/Vis/NIR spectroscopic ellipsometry (SE). The analysis revealed a crystalline structure and a low surface roughness of the doped ITO-based thin films. XTEM analysis (cross-sectional transmission electron microscopy) showed that the film has crystallites of the order of 5-10 nm and relatively large pores (around 3-5 nm in diameter). A transmittance value of 80% in the visible region and an optical band-gap energy of around 3.7 eV were found for dip-coated ITO/Nb films on SiO2/glass and glass supports. The EDX measurements proved the presence of Nb in the ITO film in a molar ratio of 3.7%, close to the intended one (4%). Gas testing measurements were carried out on the ITO undoped and doped thin films deposited on glass substrate. The presence of Nb in the ITO matrix increases the electrical signal and the sensitivity to CO detection, leading to the highest response for 2000 ppm CO concentration at working temperature of 300 °C.

14.
Gels ; 8(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36354631

ABSTRACT

Methane is a colorless/odorless major greenhouse effect gas, which can explode when it accumulates at concentrations above 50,000 ppm. Its detection cannot be performed without specialized equipment, namely sensing devices. A series of MOX sensors (chemiresistors type), with CoO and CuO sensitive films were obtained using an eco-friendly and low-cost deposition technique (sol-gel). The sensing films were characterized using AFM and SEM as thin film. The transducers are based on an alumina wafer, with Au or Pt interdigital electrodes (IDE) printed onto the alumina surface. The sensor response was recorded upon sensor exposure to different methane concentrations (target gas) under lab conditions (dried target and carrier gas from gas cylinders), in a constant gas flow, with target gas concentrations in the 5-2000 ppm domain and a direct current (DC) applied to the IDE as sensor operating voltage. Humidity and cross-sensitivity (CO2) measurements were performed, along with sensor stability measurements, to better characterize the obtained sensors. The obtained results emphasize good 3-S sensor parameters (sensitivity, partial selectivity and stability) and also short response time and complete sensor recovery, completed by a low working temperature (220 °C), which are key factors for further development of a new commercial chemiresistor for methane detection.

15.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36290658

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high death rate and an inadequate response to conventional chemotherapeutic drugs. Medical research explores plant extracts' properties to obtain potential nanomaterial-based anticancer drugs. The present study aims to formulate, develop, and characterize mucoadhesive oral films loaded with Usnea barbata (L.) dry acetone extract (F-UBA) and to investigate their anticancer potential for possible use in oral cancer therapy. U. barbata dry acetone extract (UBA) was solubilized in ethanol: isopropanol mixture and loaded in a formulation containing hydroxypropyl methylcellulose (HPMC) K100 and polyethylene glycol 400 (PEG 400). The UBA influence on the F-UBA pharmaceutical characteristics was evidenced compared with the references, i.e., mucoadhesive oral films containing suitable excipients but no active ingredient loaded. Both films were subjected to a complex analysis using standard methods to evaluate their suitability for topical administration on the oral mucosa. Physico-chemical and structural characterization was achieved by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Pharmacotechnical evaluation (consisting of the measurement of specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) proved that F-UBAs are suitable for oral mucosal administration. The brine shrimp lethality (BSL) assay was the F-UBA cytotoxicity prescreen. Cellular oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBA in blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line were investigated through complex flow cytometry analyses. Moreover, F-UBA influence on both cell type division and proliferation was determined. Finally, using the resazurin-based 96-well plate microdilution method, the F-UBA antimicrobial potential was explored against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019. The results revealed that each UBA-loaded film contains 175 µg dry extract with a usnic acid (UA) content of 42.32 µg. F-UBAs are very thin (0.060 ± 0.002 mm), report a neutral pH (7.01 ± 0.01), a disintegration time of 146 ± 5.09 s, and an ex vivo mucoadhesion time of 85 ± 2.33 min, and they show a swelling ratio after 6 h of 211 ± 4.31%. They are suitable for topical administration on the oral mucosa. Like UA, they act on CLS-354 tumor cells, considerably increasing cellular oxidative stress, nuclear condensation, and autophagy and inducing cell cycle arrest in G0/G1. The F-UBAs inhibited the bacterial and fungal strains in a dose-dependent manner; they showed similar effects on both Candida sp. and higher inhibitory activity against P. aeruginosa than S. aureus. All these properties lead to considering the UBA-loaded mucoadhesive oral films suitable for potential application as a complementary therapy in OSCC.

16.
Antioxidants (Basel) ; 11(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36139875

ABSTRACT

The oral cavity's common pathologies are tooth decay, periodontal disease, and oral cancer; oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high mortality rate. Our study aims to formulate, develop, characterize, and pharmacologically investigate the oral mucoadhesive patches (F-UBE-HPMC) loaded with Usnea barbata (L.) F.H. Wigg dry ethanol extract (UBE), using HPMC K100 as a film-forming polymer. Each patch contains 312 µg UBE, with a total phenolic content (TPC) of 178.849 µg and 33.924 µg usnic acid. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for their morphological characterization, followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Pharmacotechnical evaluation involved the measurement of the specific parameters for mucoadhesive oral patches as follows: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time. Thus, each F-UBE-HPMC has 104 ± 4.31 mg, a pH = 7.05 ± 0.04, a disintegration time of 130 ± 4.14 s, a swelling ratio of 272 ± 6.31% after 6 h, and a mucoadhesion time of 102 ± 3.22 min. Then, F-UBE-HPMCs pharmacological effects were investigated using brine shrimp lethality assay (BSL assay) as a cytotoxicity prescreening test, followed by complex flow cytometry analyses on blood cell cultures and oral epithelial squamous cell carcinoma CLS-354 cell line. The results revealed significant anticancer effects by considerably increasing oxidative stress and blocking DNA synthesis in CLS-354 cancer cells. The antimicrobial potential against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 was assessed by a Resazurin-based 96-well plate microdilution method. The patches moderately inhibited both bacteria strains growing and displayed a significant antifungal effect, higher on C. albicans than on C. parapsilosis. All these properties lead to considering F-UBE-HPMC suitable for oral disease prevention and therapy.

17.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36144974

ABSTRACT

This work presents the synthesis of nanostructured TiO2 modified with noble metal nanoparticles (Au, Ag) and lysozyme and coated on titanium foil. Moreover, the specific structural and functional properties of the resulting inorganic and hybrid materials were explored. The purpose of this study was to identify the key parameters for developing engineered coatings on titanium foil appropriate for efficient dental implants with intrinsic antibacterial activity. TiO2 nanoparticles obtained using the sol-gel method were deposited on Ti foil and modified with Au/Ag nanoparticles. Morphological and structural investigations (scanning electron and atomic force microscopies, X-ray diffraction, photoluminescence, and UV-Vis spectroscopies) were carried out for the characterization of the resulting inorganic coatings. In order to modify their antibacterial activity, which is essential for safe dental implants, the following aspects were investigated: (a) singlet oxygen (1O2) generation by inorganic coatings exposed to visible light irradiation; (b) the antibacterial behavior emphasized by titania-based coatings deposited on titanium foil (TiO2/Ti foil; Au-TiO2/Ti foil, Ag-TiO2/Ti foil); (c) the lysozyme bioactivity on the microbial substrate (Micrococcus lysodeicticus) after its adsorption on inorganic surfaces (Lys/TiO2/Ti foil; Lys/Au-TiO2/Ti foil, Lys/Ag-TiO2/Ti foil); (d) the enzymatic activity of the above-mentioned hybrids materials for the hydrolysis reaction of a synthetic organic substrate usually used for monitoring the lysozyme biocatalytic activity, namely, 4-Methylumbelliferyl ß-D-N,N',N″-triacetylchitotrioside [4-MU-ß- (GlcNAc)3]. This was evaluated by identifying the presence of a fluorescent reaction product, 7-hydroxy-4-metyl coumarin (4-methylumbelliferone).

18.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145032

ABSTRACT

Undoped and Zn-doped ITO (ITO:Zn) multifunctional thin films were successfully synthesized using the sol-gel and dipping method on three different types of substrates (glass, SiO2/glass, and Si). The effect of Zn doping on the optoelectronic, microstructural, and gas-sensing properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), spectroscopic ellipsometry (SE), Raman spectroscopy, Hall effect measurements (HE), and gas testing. The results showed that the optical constants, the transmission, and the carrier numbers were correlated with the substrate type and with the microstructure and the thickness of the films. The Raman study showed the formation of ITO films and the incorporation of Zn in the doped film (ITO:Zn), which was confirmed by EDX analysis. The potential use of the multifunctional sol-gel ITO and ITO:Zn thin films was proven for TCO applications or gas-sensing experiments toward CO2. The Nyquist plots and equivalent circuit for fitting the experimental data were provided. The best electrical response of the sensor in CO2 atmosphere was found at 150 °C, with activation energy of around 0.31 eV.

19.
Pharmaceutics ; 14(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36145557

ABSTRACT

Medical research explores plant extracts' properties to obtain potential anticancer drugs. The present study aims to formulate, develop, and characterize the bioadhesive oral films containing Usnea barbata (L.) dry ethanol extract (F-UBE-HPC) and to investigate their anticancer potential for possible use in oral cancer therapy. The physicochemical and morphological properties of the bioadhesive oral films were analyzed through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), thermogravimetric analysis (TG), and X-ray diffraction techniques. Pharmacotechnical evaluation (consisting of the measurement of the specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) completed the bioadhesive films' analysis. Next, oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBE-HPC in normal blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line and its influence on both cell types' division and proliferation was evaluated. The results reveal that each F-UBE-HPC contains 0.330 mg dry extract with a usnic acid (UA) content of 0.036 mg. The bioadhesive oral films are thin (0.093 ± 0.002 mm), reveal a neutral pH (7.10 ± 0.02), a disintegration time of 118 ± 3.16 s, an ex vivo bioadhesion time of 98 ± 3.58 min, and show a swelling ratio after 6 h of 289 ± 5.82%, being suitable for application on the oral mucosa. They displayed in vitro anticancer activity on CLS-354 tumor cells. By considerably increasing cellular oxidative stress and caspase 3/7 activity, they triggered apoptotic processes in oral cancer cells, inducing high levels of nuclear condensation and lysosomal activity, cell cycle arrest in G0/G1, and blocking DNA synthesis. All these properties lead to considering the UBE-loaded bioadhesive oral films suitable for potential application as a complementary therapy in oral cancer.

20.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36009320

ABSTRACT

Usnea lichens are known for their beneficial pharmacological effects with potential applications in oral medicine. This study aims to investigate the extract of Usnea barbata (L.) Weber ex F.H. Wigg from the Calimani Mountains in canola oil as an oral pharmaceutical formulation. In the present work, bioadhesive oral films (F-UBO) with U. barbata extract in canola oil (UBO) were formulated, characterized, and evaluated, evidencing their pharmacological potential. The UBO-loaded films were analyzed using standard methods regarding physicochemical and pharmacotechnical characteristics to verify their suitability for topical administration on the oral mucosa. F-UBO suitability confirmation allowed for the investigation of antimicrobial and anticancer potential. The antimicrobial properties against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 were evaluated by a resazurin-based 96-well plate microdilution method. The brine shrimp lethality assay (BSL assay) was the animal model cytotoxicity prescreen, followed by flow cytometry analyses on normal blood cells and oral epithelial squamous cell carcinoma CLS-354 cell line, determining cellular apoptosis, caspase-3/7 activity, nuclear condensation and lysosomal activity, oxidative stress, cell cycle, and cell proliferation. The results indicate that a UBO-loaded bioadhesive film's weight is 63 ± 1.79 mg. It contains 315 µg UBO, has a pH = 6.97 ± 0.01, a disintegration time of 124 ± 3.67 s, and a bioadhesion time of 86 ± 4.12 min, being suitable for topical administration on the oral mucosa. F-UBO showed moderate dose-dependent inhibitory effects on the growth of both bacterial and fungal strains. Moreover, in CLS-354 tumor cells, F-UBO increased oxidative stress, diminished DNA synthesis, and induced cell cycle arrest in G0/G1. All these properties led to considering UBO-loaded bioadhesive oral films as a suitable phytotherapeutic formulation with potential application in oral infections and neoplasia.

SELECTION OF CITATIONS
SEARCH DETAIL
...