Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904889

ABSTRACT

Industrial robotic arms integrated with server computers, sensors and actuators have revolutionized the way automated non-destructive testing is performed in the aeronautical sector. Currently, there are commercial, industrial robots that have the precision, speed and repetitiveness in their movements that make them suitable for use in numerous non-destructive testing inspections. Automatic ultrasonic inspection of complex geometry parts remains one of the most difficult challenges in the market. The closed configuration, i.e., restricted access to internal motion parameters, of these robotic arms makes it difficult for an adequate synchronism between the movement of the robot and the acquisition of the data. This is a serious problem in the inspection of aerospace components, where high-quality images are necessary to assess the condition of the inspected component. In this paper, we applied a methodology recently patented for the generation of high-quality ultrasonic images of complex geometry pieces using industrial robots. The methodology is based on the calculation of a synchronism map after a calibration experiment and to introduce this corrected map in an autonomous, independent external system developed by the authors to obtain precise ultrasonic images. Therefore, it has been shown that it is possible to establish the synchronization of any industrial robot with any ultrasonic imaging generation system to generate high-quality ultrasonic images.

2.
Sensors (Basel) ; 22(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36081108

ABSTRACT

A new versatile and geometrically reconfigurable ultrasonic tomography system (UTS) has been designed to inspect and obtain information about the internal structure and inner damage of columns in heritage buildings. This nondestructive system is considered innovative because it aims to overcome common limitations of existing systems. Tomographic inspections are typically carried out manually and are thus limited to small portions of construction elements. The proposed UTS allows the automatization of the inspection and the generation of numerous tomographic slices along the height of the column. It is valid for multiple types of columns and materials. In the present work, the system was tested on two limestone columns of the north façade of the Convent of Carmo in Lisbon, Portugal. The UTS is composed of a mechanical and an electronic system. The mechanical system consists of four linear motion subsystems mounted in a square setup. A transducer is placed on each of the axes, acting as emitter or receiver of the ultrasonic signals. The mechanical system also includes a guide system to adapt the inspections to the complex geometry of the columns. The electronic system allows the control and the synchronization of the movements and the emission/reception configuration of the four ultrasonic transducers.


Subject(s)
Transducers , Ultrasonics , Motion , Portugal , Ultrasonography/methods
3.
Sensors (Basel) ; 19(21)2019 Oct 26.
Article in English | MEDLINE | ID: mdl-31717817

ABSTRACT

In this paper, a magnetic microwire-based sensor array embedded under the pavement is proposed as a weighing system at customs ports of entry. This sensor is made of a cementitious material suitable for embedding within the core of concrete structures prior to curing. The objective of this research is to verify the feasibility of stress monitoring for concrete materials using an array of cement-based stress/strain sensors that have been developed using the magnetic sensing property of an embedded microwire in a cement-based composite. Test results for microwire-based sensors and gauge sensors are compared. The strain sensitivity and their linearity are investigated through experimental testing under compressive loadings. Sensors made of these materials can be designed to satisfy specific needs and reduce costs in the production of sensor aggregates with improved coupling performance, thus avoiding any disturbance to the stress state.

4.
Sensors (Basel) ; 17(5)2017 May 10.
Article in English | MEDLINE | ID: mdl-28489062

ABSTRACT

This study explores the feasibility of using transmission tomographic images based on attenuation measures in transmission to detect and estimate the most common materials that are embedded in concrete, reinforcements and natural and artificial voids. A limited set of concrete specimens have been made in which cylindrical objects such as bars/tubes of steel, PVC and aluminium have been embedded to analyse the effect of size and material. The methodology and scope of this study is presented and numerical simulations are carried out to optimize the emitter-receiver configuration and to understand the complex physical propagation phenomena of ultrasonic signals that travel through concrete with embedded inclusions. Experimental tomographic images are obtained by using an ultrasonic tomographic system, which has the advantage of needing only two ultrasonic transducers. Both the software simulation tool and the tomographic inspection system are developed by the authors. The obtained results show that PVC tubes and steel bars of diameters higher than 19 mm and embedded in cylindrical specimens, can be detected and their sizes estimated using segmented tomographic images.

SELECTION OF CITATIONS
SEARCH DETAIL
...