Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 34(50)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37699360

ABSTRACT

Solution blow spinning (SBS) is a promising alternative to produce fibrous matrices for a wide range of applications, such as packaging and biomedical devices. Polycaprolactone (PCL) is a biodegradable polyester commonly used for spinning. The usual choices for producing PCL solutions include chlorinated solvents (CS), such as chloroform. However, the high toxicity of CS makes it difficult for biological and green applications. This work evaluates the influence of two less toxic solvents, acetic acid (AA) and acetone (Acet), and their mixtures (AA/Acet) on the properties of PCL fibers produced by SBS. The results showed that Acet does not cause degradation of the PCL chains, in opposition to AA. Furthermore, adding acetone to the acetic acid tended to preserve the size of PCL chains. It was not possible to produce fibers using PCL in 100% acetone. However, the AA/Acet mixture allowed the efficient production of PCL fibers. The proportion of Acet and AA in the mixture modulated the fiber morphology and orientation, making it possible to use this green solvent system according to the desired application.

2.
Pharmaceutics ; 15(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37111535

ABSTRACT

Plantago major L. is a plant available worldwide that has been traditionally used for several medical applications due to its wound healing, anti-inflammatory, and antimicrobial properties. This work aimed to develop and evaluate a nanostructured PCL electrospun dressing with P. major extract encapsulated in nanofibers for applications in wound healing. The extract from leaves was obtained by extraction in a mixture of water:ethanol = 1:1. The freeze-dried extract presented a minimum inhibitory concentration (MIC) for Staphylococcus Aureus susceptible and resistant to methicillin of 5.3 mg/mL, a high antioxidant capacity, but a low content of total flavonoids. Electrospun mats without defects were successfully produced using two P. major extract concentrations based on the MIC value. The extract incorporation in PCL nanofibers was confirmed using FTIR and contact angle measurements. The PCL/P. major extract was evaluated using DSC and TGA demonstrating that the incorporation of the extract decreases the thermal stability of the mats as well as the degree of crystallinity of PCL-based fibers. The P. major extract incorporation on electrospun mats produced a significant swelling degree (more than 400%) and increased the capacity of adsorbing wound exudates and moisture, important characteristics for skin healing. The extract-controlled release evaluated using in vitro study in PBS (pH, 7.4) shows that the P. major extract delivery from the mats occurs in the first 24 h, demonstrating their potential capacity to be used in wound healing.

SELECTION OF CITATIONS
SEARCH DETAIL