Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 101(4): 1487-1498, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27770179

ABSTRACT

Thermophilic Thermopolyspora flexuosa GH10 xylanase (TfXYN10A) was studied in the presence of biomass-dissolving hydrophilic ionic liquids (ILs) [EMIM]OAc, [EMIM]DMP and [DBNH]OAc. The temperature optimum of TfXYN10A with insoluble xylan in the pulp was at 65-70 °C, with solubilised 1 % xylan at 70-75 °C and with 3 % xylan at 75-80 °C. Therefore, the amount of soluble substrate affects the enzyme activity at high temperatures. The experiments with ILs were done with 1 % substrate. TfXYN10A can partially hydrolyse soluble xylan even in the presence of 40 % (v/v) ILs. Although ILs decrease the apparent temperature optimum, a surprising finding was that at the inactivating temperatures (80-90 °C), especially [EMIM]OAc increases the stability of TfXYN10A indicating that the binding of IL molecules strengthens the protein structure. Earlier kinetic studies showed an increased K m with ILs, indicating that ILs function as competitive inhibitors. TfXYN10A showed low increase of K m, which was 2-, 3- and 4-fold with 15 % [EMIM]OAc, [DBNH]OAc and [EMIM]DMP, respectively. One reason for the low competitive inhibition could be the high affinity to the substrate (low K m). Xylanases with low K m (~1 mg/mL) appear to show higher tolerance to ILs than xylanases with higher K m (~2 mg/mL). Capillary electrophoresis showed that TfXYN10A hydrolyses xylan to the end-products in 15-35 % ILs practically as completely as without IL, also indicating good binding of the short substrate molecules by TfXYN10A despite of major apparent IL binding sites above the catalytic residues. Substrate binding interactions in the active site appear to explain the high tolerance of TfXYN10A to ILs.


Subject(s)
Biomass , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Ionic Liquids/chemistry , Catalytic Domain , Enzyme Activation
2.
Extremophiles ; 20(4): 515-24, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27240671

ABSTRACT

The gene of Thermotoga maritima GH10 xylanase (TmXYN10B) was synthesised to study the extreme limits of this hyperthermostable enzyme at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids (ILs). TmXYN10B expressed from Pichia pastoris showed maximal activity at 100 °C and retained 92 % of maximal activity at 105 °C in a 30-min assay. Although the temperature optimum of activity was lowered by 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), TmXYN10B retained partial activity in 15-35 % hydrophilic ILs, even at 75-90 °C. TmXYN10B retained over 80 % of its activity at 90 °C in 15 % [EMIM]OAc and 15-25 % 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DMP) during 22-h reactions. [EMIM]OAc may rigidify the enzyme and lower V max. However, only minor changes in kinetic parameter K m showed that competitive inhibition by [EMIM]OAc of TmXYN10B is minimal. In conclusion, when extended enzymatic reactions under extreme conditions are required, TmXYN10B shows extraordinary potential.


Subject(s)
Bacterial Proteins/metabolism , Endo-1,4-beta Xylanases/metabolism , Hot Temperature , Ionic Liquids/pharmacology , Thermotoga maritima/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Biomass , Endo-1,4-beta Xylanases/antagonists & inhibitors , Endo-1,4-beta Xylanases/genetics , Enzyme Inhibitors/pharmacology , Enzyme Stability , Industrial Microbiology , Pichia/genetics , Pichia/growth & development , Pichia/metabolism , Thermotoga maritima/genetics
3.
Extremophiles ; 18(6): 1023-34, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25074836

ABSTRACT

GH10 xylanase from Thermoascus aurantiacus strain SL16W (TasXyn10A) showed high stability and activity up to 70-75 °C. The enzyme's half-lives were 101 h, 65 h, 63 min and 6 min at 60, 70, 75 and 80 °C, respectively. The melting point (T m), as measured by DSC, was 78.5 °C, which is in line with a strong activity decrease at 75-80 °C. The biomass-dissolving ionic liquid 1-ethyl-3-methylimidazolium acetate ([emim]OAc) in 30 % concentration had a small effect on the stability of TasXyn10A; T m decreased by only 5 °C. It was also observed that [emim]OAc inhibited much less GH10 xylanase (TasXyn10A) than the studied GH11 xylanases. The K m of TasXyn10A increased 3.5-fold in 15 % [emim]OAc with xylan as the substrate, whereas the approximate level of V max was not altered. The inhibition of enzyme activity by [emim]OAc was lesser at higher substrate concentrations. Therefore, high solid concentrations in industrial conditions may mitigate the inhibition of enzyme activity by ionic liquids. Molecular docking experiments indicated that the [emim] cation has major binding sites near the catalytic residues but in lower amounts in GH10 than in GH11 xylanases. Therefore, [emim] cation likely competes with the substrate when binding to the active site. The docking results indicated why the effect is lower in GH10.


Subject(s)
Bacterial Proteins/chemistry , Endo-1,4-beta Xylanases/chemistry , Imidazoles/pharmacology , Ionic Liquids/pharmacology , Thermoascus/enzymology , Amino Acid Sequence , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Catalytic Domain , Endo-1,4-beta Xylanases/antagonists & inhibitors , Endo-1,4-beta Xylanases/metabolism , Enzyme Stability , Hot Temperature , Molecular Docking Simulation , Molecular Sequence Data
4.
Appl Environ Microbiol ; 76(1): 356-60, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19854928

ABSTRACT

The effects of different structural features on the thermostability of Thermopolyspora flexuosa xylanase XYN10A were investigated. A C-terminal carbohydrate binding module had only a slight effect, whereas a polyhistidine tag increased the thermostability of XYN10A xylanase. In contrast, glycosylation at Asn26, located in an exposed loop, decreased the thermostability of the xylanase. The presence of a substrate increased stability mainly at low pH.


Subject(s)
Actinomycetales/enzymology , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Enzyme Stability , Glycosylation , Hot Temperature , Hydrogen-Ion Concentration , Models, Molecular , Protein Structure, Tertiary/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...