Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35591719

ABSTRACT

Globally, there are several critical infrastructure networks (water and gas networks) whose disruption or destruction would significantly affect the maintenance of vital societal functions, such as the health, safety, security, and social or economic well-being of people. They would also have significant local, regional, and national impacts as a result of the inability to maintain those functions, and would have similar cross-border effects. The main objective of this article is to investigate by comparative numerical studies the structural response of three types of buried pipes made of different materials, primarily steel, concrete, and high-density polyethylene, resulting from the impact of the environment through exceptional external actions, such as explosions at the surface of the land in the vicinity of the laying areas. The dynamic transient analysis of the equation of motion with the application of the explicit integration procedure was performed with the ANSYS numerical simulation program. This study allows designers to solve complex problems related to the quality of the laying ground of water networks to canals. The knowledge accumulated gives us the possibility to correctly specify the optimal economic and technical value of the ratio between the laying depth of pipes and their diameter, the importance of the radius ratio of the pipe and the thickness of its wall, and, importantly, the improvement of the quality of the foundation ground. Following the results obtained, it is estimated that the optimal economic and technical value of the ratio between the laying depth of the pipes (H) and their diameter (D) is 3, regardless of the material from which the pipe is made.

2.
Materials (Basel) ; 14(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201406

ABSTRACT

Glass-reinforced plastic (GRP) composite materials are mainly used in the construction of pipes due to the wide range of sizes, ease of installation, adaptability to the specific situation in the field and, last but not least, the more competitive price as the nominal diameter increases. Their wide range of applications: drinking and raw water transport, sewerage, industrial waters, desalination plants, mining, etc., has led to the need to tailor the behaviour of the composite material to different fields, with pH values that are not neutral. Based on the experimental data, we aimed to study the change in the structure of the composite material as influenced by the soil characteristics: neutral, basic and acidic. In addition, starting with the pH of the three types of soil-basic, acidic and neutral-which significantly affect GRP composite materials, we calculated the pipe damage index and the Pearson correlation coefficients for axial tension. The results highlight the significant influence of the soil pH on the behaviour over time of the buried GRP pipes. Thus, laying the pipe in acidic soil significantly reduces its life, which should be taken into consideration during the design phase.

3.
Materials (Basel) ; 14(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072081

ABSTRACT

This article presents the experimental results obtained by the testing an experimental model of water distribution which is flexible and above-head mounted on a seismic platform, and their validation in a theoretical manner, but also by the Finite Element Method, using the ANSYS simulation program. This type of system shown by the experimental model is desired to be used in practice not only in seismic areas, but also in the areas of heavy road transport, landslides, etc. thorugh the use thereof in the most stressed points of the network (hearth entry/exit, before/after an elbow, etc.) but also on long routes, at optimal distances. The results achieved are related to glass- reinforced plastic (GRP) pipes with a nominal diameter DN = 250 mm, but conclusions may be drawn starting from these to help future research where the mass of the earth is desired to be taken into account. The present results are comprehensive for buried pipes operated dynamically or seismically at low-medium intensity, as this type of earthquake occurs more and more often in Europe. The experimental tests in this article do not have the characteristics necessary for a high intensity seismic action (above 5° Richter).

SELECTION OF CITATIONS
SEARCH DETAIL
...