Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931805

ABSTRACT

Health assessment and preventive maintenance of structures are mandatory to predict injuries and to schedule required interventions, especially in seismic areas. Structural health monitoring aims to provide a robust and effective approach to obtaining valuable information on structural conditions of buildings and civil infrastructures, in conjunction with methodologies for the identification and, sometimes, localization of potential risks. In this paper a low-cost solution for structural health monitoring is proposed, exploiting a customized embedded system for the acquisition and storing of measurement signals. Experimental surveys for the assessment of the sensing node have also been performed. The obtained results confirmed the expected performances, especially in terms of resolution in acceleration and tilt measurement, which are 0.55 mg and 0.020°, respectively. Moreover, we used a dedicated algorithm for the classification of recorded signals in the following three classes: noise floor (being mainly related to intrinsic noise of the sensing system), exogenous sources (not correlated to the dynamic behavior of the structure), and structural responses (the response of the structure to external stimuli, such as seismic events, artificially forced and/or environmental solicitations). The latter is of main interest for the investigation of structures' health, while other signals need to be recognized and filtered out. The algorithm, which has been tested against real data, demonstrates relevant features in performing the above-mentioned classification task.

2.
Sensors (Basel) ; 22(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36559985

ABSTRACT

With the support of public authorities and research institutions, volcanic ash fallout and its impact on the safety of people, infrastructure and services are addressed with the aim of defining protocols and instruments for the reliable and effective handling of related emergencies. Most of the solutions proposed in the literature on ash fallout monitoring suffer from high cost and are demanding in terms of installation and maintenance. The approach suggested in this work is based on the use of a low-cost vision embedded system and a dedicated algorithm which automatically processes acquired frames of ground-deposited volcanic ash in order to estimate the main geometric properties of each particle identified in the work area. A complete characterization of the system is presented, along with a robustness analysis of particle shapes, their orientation and their position in the inspected frame. An accuracy of ±40.2 µm (with a 3σ limit) and a resolution of 32.9 µm (in the worst case), over a framed area of 130 mm by 100 mm, were estimated; these values would fulfill the objectives of the application.


Subject(s)
Volcanic Eruptions , Humans
3.
Sensors (Basel) ; 22(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36236223

ABSTRACT

Assistive Technology helps to assess the daily living and safety of frail people, with particular regards to the detection and prevention of falls. In this paper, a comparison is provided among different strategies to analyze postural sway, with the aim of detecting unstable postural status in standing condition as precursors of potential falls. Three approaches are considered: (i) a time-based features threshold algorithm, (ii) a time-based features Neuro-Fuzzy inference system, and (iii) a Neuro-Fuzzy inference fed by Discrete-Wavelet-Transform-based features. The analysis was performed across a wide dataset and exploited performance indexes aimed at assessing the accuracy and the reliability of predictions provided by the above-mentioned strategies. The results obtained demonstrate valuable performances of the three considered strategies in correctly distinguishing among stable and unstable postural status. However, the analysis of robustness against noisy data highlights better performance of Neuro-Fuzzy inference systems with respect to the threshold-based algorithm.


Subject(s)
Algorithms , Wavelet Analysis , Humans , Postural Balance , Reproducibility of Results
4.
Sensors (Basel) ; 21(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34770486

ABSTRACT

Volcanic ash fall-out represents a serious hazard for air and road traffic. The forecasting models used to predict its time-space evolution require information about the core characteristics of volcanic particles, such as their granulometry. Typically, such information is gained by the spot direct observation of the ash collected at the ground or by using expensive instrumentation. In this paper, a vision-based methodology aimed at the estimation of ash granulometry is presented. A dedicated image processing paradigm was developed and implemented in LabVIEW™. The methodology was validated experimentally using digital reference images resembling different operating conditions. The outcome of the assessment procedure was very encouraging, showing an accuracy of the image processing algorithm of 1.76%.


Subject(s)
Volcanic Eruptions
5.
Sensors (Basel) ; 21(14)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34300617

ABSTRACT

The development of low-cost mass sensors is of unique interest for the scientific community due to the wide range of fields requiring these kind of devices. In this paper, a full inkjet-printed mass sensor is proposed. The device is based on a PolyEthylene Terephthalate (PET) cantilever beam (operating in its first natural frequency) where a strain-sensor and a planar coil have been realized by a low-cost InkJet Printing technology to implement the sensing and actuation strategies, respectively. The frequency readout strategy of the sensor presents several advantages, such as the intrinsic robustness against instabilities of the strain sensor, the residual stress of the cantilever beam, the target mass material, and the distance between the permanent magnet and the actuation coil (which changes as a function of the target mass values). However, the frictionless actuation mode represents another shortcoming of the sensor. The paper describes the sensor design, realization, and characterization while investigating its expected behavior by exploiting dedicate models. The working span of the device is 0-0.36 g while its resolution is in the order of 0.001 g, thus addressing a wide range of potential applications requiring very accurate mass measurements within a narrow operating range.

6.
Sensors (Basel) ; 20(17)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32883014

ABSTRACT

Population ageing is having a direct influence on serious health issues, including hampered mobility and physical decline. Good habits in performing physical activities, in addition to eating and drinking, are essential to improve the life quality of the elderly population. Technological solutions, aiming at increasing awareness or providing reminders to eat/drink regularly, can have a significant impact in this scenario. These solutions enable the possibility to constantly monitor deviations from users' normal behavior, thus allowing reminders to be provided to users/caregivers. In this context, this paper presents a radio-frequency identification (RFID) system to monitor user's habits, such as the use of food, beverages, and/or drugs. The device was optimized to fulfill specifications imposed by the addressed application. The approach could be extended for the monitoring of home appliances, environment exploitation, and activity rate. Advantages of the approach compared to other solutions, e.g., based on cameras, are related to the low level of invasiveness and flexibility of the adopted technology. A major contribution of this paper is related to the wide investigation of system behavior, which is aimed to define the optimal working conditions of the system, with regards to the power budget, user (antenna)-tag reading range, and the optimal inter-tag distance. To investigate the performance of the system in tag detection, experiments were performed in a scenario replicating a home environment. To achieve this aim, specificity and sensitivity indexes were computed to provide an objective evaluation of the system performance. For the case considered, if proper conditions are meet, a specificity value of 0.9 and a sensitivity value of 1 were estimated.


Subject(s)
Fitness Trackers , Radio Frequency Identification Device , Self-Help Devices , Aged , Humans , Monitoring, Physiologic , Technology
7.
Sensors (Basel) ; 19(23)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816874

ABSTRACT

Magnetic field sensors are successfully used in numerous application contexts such as position sensing, speed detection, current detection, contactless switches, vehicle detection, and electronic compasses. In this paper, an inkjet printed magnetic sensor, based on the magneto-mechanical sensing principle, is presented together with a physical model describing its physical behavior and experimental results. The main novelties of the proposed solution consist of its low cost, rapid prototyping (printing and drying time), disposability, and in the use of a commercial low-cost printer. A measurement survey has been carried out by investigating magnetic fields belonging to the range 0-27 mT and for different values of the excitation current forced in the actuation coil. Experimental results demonstrate the suitability of both the proposed sensing strategy and model developed. In particular, in the case of an excitation current of 100 mA, the device responsivity and resolution are 3700 µÎµ/T and 0.458 mT, respectively.

8.
Sensors (Basel) ; 17(4)2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28368318

ABSTRACT

Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 066121, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16906928

ABSTRACT

It is well known that overdamped unforced dynamical systems do not oscillate. However, well-designed coupling schemes, together with the appropriate choice of initial conditions, can induce oscillations (corresponding to transitions between the stable steady states of each nonlinear element) when a control parameter exceeds a threshold value. In recent publications [A. Bulsara, Phys. Rev. E 70, 036103 (2004); V. In, ibid. 72, 045104 (2005)], we demonstrated this behavior in a specific prototype system, a soft-potential mean-field description of the dynamics in a hysteretic "single-domain" ferromagnetic sample. These oscillations are now finding utility in the detection of very weak "target" magnetic signals, via their effect on the oscillation characteristics--e.g., the frequency and asymmetry of the oscillation wave forms. We explore the underlying dynamics of a related system, coupled bistable "standard quartic" dynamic elements; the system shows similarities to, but also significant differences from, our earlier work. dc as well as time-periodic target signals are considered; the latter are shown to induce complex oscillatory behavior in different regimes of the parameter space. In turn, this behavior can be harnessed to quantify the target signal.

10.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 2828-31, 2006.
Article in English | MEDLINE | ID: mdl-17945743

ABSTRACT

The development and realization of micropipettes and micropumps has captured the interest of people working in both biomedical and chemical areas for the capability of managing very low quantity of liquid (drug, biological liquid or expensive reagent) as well as everyone interested in controlling small flows for dedicated applications. In this paper a novel ferrofluidic pump adopting an electromagnetic actuation is proposed. The pump is realized by injecting three drops of ferrofluids into the pipe (two valves and a plunger are required) in the position where the pump must operate and by exploiting the forces produced onto each ferrofluid drop by some coils externally placed with respect to the pipe. The absence of any mechanical moving parts, the possibility to realize a volumetric pump in a section of an existing pipe without interruptions and deformation are the main advantages of the architecture proposed as compared to existing prototypes. A detailed description of the strategy proposed is presented along with a preliminary characterization of the prototype developed.


Subject(s)
Computer-Aided Design , Flow Injection Analysis/instrumentation , Magnetics/instrumentation , Microfluidics/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis , Flow Injection Analysis/methods , Iron , Microfluidics/methods
11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(3 Pt 2): 036103, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15524583

ABSTRACT

It is well known that overdamped unforced dynamical systems do not oscillate. However, well-designed coupling schemes, together with the appropriate choice of initial conditions, can induce oscillations when a control parameter exceeds a threshold value. In a recent publication [Phys. Rev. E 68, 045102 (2003)]], we demonstrated this behavior in a specific prototype system, a soft-potential mean-field description of the dynamics in a hysteretic "single-domain" ferromagnetic sample. The previous analysis of this work showed that N (odd) unidirectionally coupled elements with cyclic boundary conditions would, in fact, oscillate when a control parameter-in this case the coupling strength-exceeded a critical value. These oscillations are now finding utility in the detection of very weak "target" signals, via their effect on the oscillation characteristics, e.g., the frequency and asymmetry of the oscillation wave forms. In this paper we explore the underlying dynamics of this system. Scaling laws that govern the oscillation frequency in the vicinity of the critical point, as well as the zero-crossing intervals in the presence of a symmetry-breaking target dc signal, are derived; these quantities are germane to signal detection and analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...