Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 187(9): 575, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26282008

ABSTRACT

The most essential requirement for water management is efficient and informative monitoring. Operating water quality monitoring networks is a challenge from both the scientific and economic points of view, especially in the case of river sections ranging over hundreds of kilometers. Therefore, spatio-temporal optimization is vital. In the present study, the optimization of the monitoring system of the River Tisza, the second largest river in Central Europe, is presented using a generally applicable and novel method, combined cluster and discriminant analysis (CCDA). This area for the study was chosen because, spatial inhomogeneity of a river's monitoring network can more easily be studied in a mostly natural watershed - as in the case of the River Tisza - since the effects of man-made obstacles: e.g water barrage systems, hydroelectric power plants, artificial lakes, etc. are more pronounced. Furthermore, since the temporal sampling frequency was bi-weekly, the opportunity of optimizing the monitoring system on a temporal (monthly) scale arose. In the research, 15 water quality parameters measured at 14 sampling sites in the Hungarian section of the River Tisza were assessed for the time period 1975-2005. First, four within-year sections ("hydrochemical seasons") were determined, characterized with unequal lengths, namely 2, 4, 2, and 4 months long starting with spring. Homogeneous groups of sampling sites were determined in space for every season, with the main separating factors being the tributaries and man-made obstacles. Similarly, an overall pattern of homogeneity was determined. As an overall result, the 14 sampling sites could be grouped into 11 homogeneous groups leading to the possibility of reducing the number of sampling locations and thus making the monitoring system more cost-efficient.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Rivers/chemistry , Seasons , Water Pollutants, Chemical/analysis , Water Quality , Cluster Analysis , Discriminant Analysis , Environmental Monitoring/statistics & numerical data , Geographic Information Systems , Hungary , Spatio-Temporal Analysis
2.
Acta Biol Hung ; 65(1): 38-46, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24561893

ABSTRACT

Hydroxamic acids (HAs) are plant secondary metabolites produced by certain cereals, which have been found to be toxic to pest aphids in artificial diet assays. Previous studies have shown that tetraploid and hexaploid wheat varieties, the leaf tissues of which contained higher levels of these compounds than used in artificial diets, did not reduce aphid settling or fecundity. This current study reports findings on a high HA producing B genome accession of the diploid ancestor of wheat, Aegilops speltoides. We found that this accession does have a negative impact on aphid host selection and substantially reduces nymph production. Whole leaf tissue assays showed very high levels of HAs, well in excess of the toxic level determined in the artificial diet assays. Extraction of the apoplast fluid (AF) from this accession showed that the HA level is much lower than that of the whole tissue, but is still close to the artificial diet toxic level. Furthermore the HA level in the AF increases in response to aphid feeding. These observations could explain why hexaploid wheat remains susceptible to aphids, despite having whole leaf tissue HA levels in excess of the toxic levels determined in artificial diets.


Subject(s)
Aphids/physiology , Herbivory , Hydroxamic Acids/metabolism , Triticum/metabolism , Animals , Antibiosis , Diploidy , Fertility , Plant Leaves/metabolism , Polyploidy , Triticum/genetics
3.
Acta Biol Hung ; 64(4): 476-89, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24275593

ABSTRACT

The aim of the study was to analyse the effect of atmospheric cadmium (Cd) pollution of atmospheric origin in maize compared to a control without Cd pollution. The plant parameters investigated were the timing of phenological phases, leaf area index (LAI) and yield, while radiation and water regime parameters were represented by albedo (reflection grade) and evapotranspiration, respectively. In treatments with and without irrigation, Cd caused a significant reduction in LAI, accompanied by lower evapotranspiration. The mean annual albedo in the Cd-polluted treatment only rose to a moderate extent in 2011 (in 2010 there was hardly any change), but changes within the year were more pronounced in certain phases of development. Cd led to greater reflection of radiation by plants during the vegetative phase, so the radiation absorption of the canopy was reduced leading to a lower level of evapotranspiration. In the dry, hot year of 2011 maize plants in the non-irrigated treatments showed a substantial reduction in grain dry matter, but maize yield losses could be reduced by irrigation in areas exposed to Cd pollution.


Subject(s)
Air Pollutants/toxicity , Cadmium/toxicity , Plant Leaves/drug effects , Water Pollutants, Chemical/toxicity , Zea mays/drug effects , Biomass , Cadmium/analysis , Plant Leaves/chemistry , Plant Transpiration/drug effects , Soil/chemistry , Weather , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...