Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37109404

ABSTRACT

The use of growth-stimulating signals to increase the tolerance of plants to water deficits can be an important strategy in the production of plants in dry areas. Therefore, a split-plot experiment with three replications was conducted to evaluate the effects of sodium nitroprusside (SNP) application rate as an NO donor (0, 100, and 200 µM) on the growth and yield parameters of Silybum marianum L. (S. marianum) under different irrigation cut-off times (control, irrigation cut-off from stem elongation, and anthesis). The results of this study showed that with increasing drought severity, leaf RWC, proline content and capitula per plant, 1000 grain weight, plant height, branch per plant, capitula diameter, and the biological and grain yield of S. marianum decreased significantly, whereas the number of grains per capitula increased compared with the control. Also, by irrigation cut-off from the stem elongation stage, the density of leaf stomata at the bottom and top epidermis increased by 64% and 39%, respectively, and the length of the stomata at the bottom epidermis of the leaf decreased up to 28%. In contrast, the results of this experiment showed that the exogenous application of nitric oxide reduced the negative effects of irrigation cut-off, such that the application of 100 µM SNP enhanced RWC content (up to 9%), proline concentration (up to 40%), and grain (up to 34%) and biological (up to 44%) yields in plants under drought stress compared with non-application of SNP. The decrease in the number of capitula per plant and capitula diameter was also compensated by foliar application of 100 µM SNP under stress conditions. In addition, exogenous NO changed the behavior of the stomata during the period of dehydration, such that plants treated with SNP showed a decrease in the stomatal density of the leaf and an increase in the length of the stomata at the leaf bottom epidermis. These results indicate that SNP treatment, especially at 100 µM, was helpful in alleviating the deleterious effects of water deficiency and enhancing the tolerance of S. marianum to withholding irrigation times.

2.
Environ Sci Pollut Res Int ; 28(41): 58640-58659, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34120281

ABSTRACT

As soil contamination with heavy metals is increasing and polyamines have roles in the growth of mycorrhiza and plants, it is important to study phytoremediation, growth, tolerance, and mycorrhization in Lallemantia iberica as a multi-purpose plant, by the application of putrescine along with mycorrhiza in Pb-contaminated soils. For this purpose, the study was performed in a factorial arrangement with Pb (0, 300, 600, and 900 mg Pb/kg soil), mycorrhiza (non-inoculation, Funneliformis mosseae (Fm), and Rhizophagus intraradices (Ri)), and putrescine (0, 0.5, and 1 mM) in a greenhouse. Results showed that antioxidant activities, plant Pb, and mycorrhizal features enhanced, while transfer factor (TF), biomass, and tolerance decreased under Pb levels. Mycorrhiza improved growth, greenness, defense, and tolerance and reduced TF, Pb, and H2O2 content under Pb stress. Putrescine (0.5 mM) increased catalase activity, biomass, and colonization and reduced Pb content and TF under Pb levels. Combination of 0.5 mM putrescine with Fm increased shoot biomass (13%), peroxidase (17.2%), root P (7.5%), shoot tolerance (14.4%), colonization (5.1%), and hyphal width (5.5%) and decreased malondialdehyde (20.5%) and shoot Pb content (28.1%). Putrescine (1 mM) had negative effects on all traits in combination with Ri but not with Fm. Combination of putrescine and Fm showed more efficiency in decreasing Pb content in L. iberica and was effective in phytostabilization. It is generally concluded that 0.5 mM putrescine was the beneficial concentration in combination with mycorrhiza, Pb stress, and single use to improve plant performance, and Fm was a useful species for improving the growth and tolerance of L. iberica under Pb levels.


Subject(s)
Mycorrhizae , Soil Pollutants , Biodegradation, Environmental , Fungi , Hydrogen Peroxide , Lead , Mycorrhizae/chemistry , Plant Roots/chemistry , Putrescine , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...