Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Transplant ; 13(2): 103-111, 2004 Mar.
Article in English | MEDLINE | ID: mdl-28853933

ABSTRACT

The regenerating skeletal muscle environment is capable of inducing uncommitted progenitors to terminally differentiate. The aim of this work was to determine whether adipose tissue-derived stromal cells were able to participate in muscle regeneration and to characterize the effect on muscle mass and functional capacities after transplantation of these cells. Adipose tissue stromal cells labeled with Adv cyto LacZ from 3-day-old primary cultures (SVF1) were autotransplanted into damaged tibialis anterior muscles. Fifteen days later, ß-galactosidase staining of regenerated fibers was detected, showing participation of these cells in muscle regeneration. Two months after SVF1 cell transfer, muscles were heavier, showed a significantly larger fiber section area, and developed a significantly higher maximal force compared with damaged control muscles. These results are similar to those previously obtained after satellite cell transplantation. However, SVF1 transfer also generated a small amount of adipose tissue localized along the needle course. To minimize these adipose contaminants, we transferred cells from 7-day-old secondary cultures of the SVF1, containing only a small proportion of already engaged preadipocytes (SVF2). Under these conditions, no adipose tissue was observed in regenerated muscle but there was also no effect on muscle performances compared with damaged control muscles. This result provides further evidence for the existence of progenitor cells in the stromal fraction of freshly isolated adipose tissue cells, which, under our conditions, keep some of their pluripotent properties in primary cultures.

2.
Cell Transplant ; 11(2): 169-180, 2002 Mar.
Article in English | MEDLINE | ID: mdl-28853949

ABSTRACT

Changes in morphology, metabolism, myosin heavy chain gene expression, and functional performances in damaged rabbit muscles with or without transplantation of primary satellite cells were investigated. For this purpose, we damaged bilaterally the fast muscle tibialis anterior (TA) with either 1.5 or 2.6 ml cardiotoxin 10-5 M injections. Primary cultures of satellite cells were autotransplanted unilaterally 5 days after muscle degeneration. Two months postoperation, the masses of damaged TAs, with or without transplantation, were significantly larger than those of the controls. Furthermore, damaged transplanted muscles weighed significantly more than damaged muscles only. The increase in muscle mass was essentially due to increased fiber size. These results were independent of the quantity of cardiotoxin injected into the muscles. Maximal forces were similar in control and 2.6 ml damaged TAs with or without satellite cell transfer. In contrast, 1.5 ml damaged TAs showed a significant decrease in maximal forces that reached the level of controls after transplantation of satellite cells. Fatigue resistance was similar in control and 1.5 ml damaged TAs independently of satellite cell transfer. Fatigue index was significantly higher in 2.6 ml damaged muscles with or without cell transplantation. These changes could be explained in part by muscle metabolism, which shifted towards oxidative activities, and by gene expression of myosin heavy chain isoforms, which presented an increase in type IIa and a decrease in type I and IIb in all damaged muscles with or without cell transfer. Under our experimental conditions, these results show that muscle damage rather than satellite cell transplantation changes muscle metabolism, myosin heavy chain isoform gene expression, and, to a lesser extent, muscle contractile properties. In contrast, muscle weight and fiber size are increased both by muscle damage and by satellite cell transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...