Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Wildl Dis ; 39(1): 73-83, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12685070

ABSTRACT

Baseline data on health of free-ranging wildlife is essential to evaluate impacts of habitat transformation and wildlife translocation, rehabilitation, and reintroduction programs. Health information on many species, especially great apes, is extremely limited. Between 1996 and 1998, 84 free-ranging orangutans captured for translocation, underwent a complete health evaluation. Analogous data were gathered from 60 semi-captive orangutans in Malaysia. Baseline hematology and serology; vitamin, mineral and pesticide levels; and results of health evaluations, including physical examination, provide a baseline for future monitoring. Free-ranging and semi-captive orangutans shared exposure to 11 of 47 viruses. The semi-captive orangutans had significantly higher prevalence of antibodies to adenovirus (P < 0.0005) and rota (SA 11) virus (P < 0.008). More free-ranging than semi-captive animals had antibodies to Japanese encephalitis virus (P < 0.08) and foamy virus (P = 0.05). Exposure to parainfluenza and langat viruses was detected exclusively in semi-captive animals and exposure to sinbis virus was only found in free-ranging orangutans. There was evidence of exposure to respiratory syncytial virus, coxsackie virus, dengue virus, and zika virus in both groups. Ebstein-Barr virus was ubiquitous in both groups. Prevalence of antibodies against mumps virus changed from 0% in 1996 to 45% in 1998. No antibodies were detected to many important zoonotic viral pathogens, including herpesvirus and hepatitis virus. Prevalence of Balantidium coli and Plasmodium pitheci infections and exposure to mycobacterium was higher in the semi-captive animals. Differences in exposure to pathogens between the groups may be due to environmental factors including differences in exposures to other species, habitat quality, nutritional status, and other potential stressors. Differences in health parameters between captive and free-ranging orangutans need to be considered when planning conservation areas, translocation procedures, and rehabilitation protocols. Because survival of the orangutan is linked to animal and ecosystem health, results of this study will assist wildlife conservation programs by providing baseline health information.


Subject(s)
Ape Diseases/epidemiology , Health Status , Pongo pygmaeus , Protozoan Infections, Animal/epidemiology , Virus Diseases/veterinary , Animals , Animals, Wild , Antibodies, Viral/blood , Ape Diseases/parasitology , Ape Diseases/virology , Conservation of Natural Resources , Feces/parasitology , Feces/virology , Female , Malaysia/epidemiology , Male , Physical Examination/veterinary , Pongo pygmaeus/blood , Seroepidemiologic Studies , Virus Diseases/epidemiology , Zoonoses
2.
Vector Borne Zoonotic Dis ; 2(2): 97-103, 2002.
Article in English | MEDLINE | ID: mdl-12653303

ABSTRACT

Contemporary human land use patterns have led to changes in orangutan ecology, such as the loss of habitat. One management response to orangutan habitat loss is to relocate orangutans into regions of intact, protected habitat. Young orangutans are also kept as pets and have at times been a valuable commodity in the illegal pet trade. In response to this situation, government authorities have taken law enforcement action by removing these animals from private hands and attempted to rehabilitate and release these orangutans. In relocating free-ranging orangutans, the animals are typically held isolated or with family members for <48 h and released, but during the course of rehabilitation, orangutans often spend some time in captive and semicaptive group settings. Captive/semicaptive groups have a higher density of orangutans than wild populations, and differ in other ways that may influence susceptibility to infectious disease. In order to determine the impact of these ecological settings on malaria, the prevalence of malaria was compared between 31 captive and semicaptive orangutans in a rehabilitation program at the Sepilok Orangutan Rehabilitation Centre and 43 wild orangutans being moved in a translocation project. The prevalence of malaria parasites, as determined by blood smear and Plasmodium genus-specific nested-polymerase chain reaction, was greater in the captive/semicaptive population (29 of 31) than in the wild population (5 of 43) even when accounting for age bias. This discrepancy is discussed in the context of population changes associated with the management of orangutans in captive/semicaptive setting, in particular a 50-fold increase in orangutan population density. The results provide an example of how an ecological change can influence pathogen prevalence.


Subject(s)
Ecology , Malaria/epidemiology , Malaria/veterinary , Pongo pygmaeus/parasitology , Age Factors , Animals , Borneo/epidemiology , Female , Male , Plasmodium/genetics , Plasmodium/isolation & purification , Population Dynamics , Prevalence , Sex Factors
3.
Conserv Biol ; 9(5): 979-981, 1995 Oct.
Article in English | MEDLINE | ID: mdl-34261290
SELECTION OF CITATIONS
SEARCH DETAIL
...