Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
J Anim Breed Genet ; 140(4): 376-389, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36852475

ABSTRACT

The objective of the present study was to investigate the most critical issues associated with the limited genetic progress evidenced in the Argentinean Holstein ("Holando Argentino") breed in the last 20 years (only 26% of the phenotypic trend in milk yield was due to genetics). The study comprised the analysis of population structure, realized genetic selection differentials, genetic progress and partition of genetic trends by sex and country of origin from 1936 to 2019 (1,045,582 records; 24,680 sires and 619,322 dams in the pedigree). Average inbreeding steadily increased in the last 15 generations (ΔF = 0.6%, which translates to Ne = 75). Partition of genetic trends revealed that local genetics made a negligible contribution to genetic progress, which for most traits was highly dependent on imported genetics (>80%). Mean generation intervals were fairly constant until 2009 (8-9 years for males and 5-6 years for females, respectively) and then decreased, especially in the paths of sires of bulls and dams of bulls (to 5 and 4 years, respectively) mostly due to the influence of imported sires. The reduction in generation intervals was counterbalanced by a marked deterioration of realized selection differentials, particularly in the path of sires of bulls that nevertheless made the largest contribution to genetic progress. In the last 20 years, realized selection differentials in this path went from 533.6 to 170.8 kg for milk yield and from 16.7 to 13.3 kg for protein yield (1.7-0.5 and 1.6-1.3 standard deviation units, respectively). Among all considered traits (milk yield, fat yield, protein yield, stature, final score and daughter pregnancy rate) in the analysed period, annual genetic gain was negative for milk yield, fairly constant for composition and conformation traits, and positive only in the case of daughter pregnancy rate. Considered together, these results suggest that limited genetic progress is due to the absence of a sound breeding programme that includes genomic selection and a carefully defined selection objective, together with the absence of stronger regulations in germplasm importation; however, other factors such as potential genetics by environment interactions cannot be ruled out.


Subject(s)
Inbreeding , Milk , Pregnancy , Female , Cattle/genetics , Animals , Male , Genome , Genomics , Phenotype , Selection, Genetic , Lactation/genetics
2.
Genet. mol. biol ; 25(1): 57-60, 2002. tab, graf
Article in English | LILACS | ID: lil-324987

ABSTRACT

Honeybee defensive behavior is a useful selection criterion, especially in areas with Africanized honeybees (Apis mellifera L). In all genetic improvement programs the selected characters must be measured with precision, and because of this we evaluated a metabolic method for testing honeybee defensive behavior in the laboratory for its usefulness in distinguishing between honeybee ecotypes and selecting honeybees based on their level of defensive responses. Ten honeybee colonies were used, five having been produced by feral queens from a subtropical region supposedly colonized by Africanized honeybees and five by queens from a temperate region apparently colonized by European honeybees. We evaluate honeybee defensive behavior using a metabolic test based on oxygen consumption after stimulation with an alarm pheromone, measuring the time to the first response, time to maximum oxygen consumption, duration of activity, oxygen consumption at first response, maximum oxygen consumption and total oxygen consumption, colonies being ranked according to the values obtained for each variable. Significant (p < 0.05) differences were detected between ecotypes for each variable but for all variables the highest rankings were obtained for colonies of subtropical origin, which had faster and more intense responses. All variables were highly associated (p < 0.05). Total oxygen consumption was the best indicator of metabolic activity for defensive behavior because it combined oxygen consumption and the length of the response. This laboratory method may be useful for evaluating the defensive behavior of honey bees in genetic programs designed to select less defensive bees


Subject(s)
Animals , Bees , Behavior, Animal , Oxygen Consumption , Clinical Laboratory Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...