Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 362(6410): 53-57, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30287655

ABSTRACT

Himalayan rivers are frequently hit by catastrophic floods that are caused by the failure of glacial lake and landslide dams; however, the dynamics and long-term impacts of such floods remain poorly understood. We present a comprehensive set of observations that capture the July 2016 glacial lake outburst flood (GLOF) in the Bhotekoshi/Sunkoshi River of Nepal. Seismic records of the flood provide new insights into GLOF mechanics and their ability to mobilize large boulders that otherwise prevent channel erosion. Because of this boulder mobilization, GLOF impacts far exceed those of the annual summer monsoon, and GLOFs may dominate fluvial erosion and channel-hillslope coupling many tens of kilometers downstream of glaciated areas. Long-term valley evolution in these regions may therefore be driven by GLOF frequency and magnitude, rather than by precipitation.

2.
Science ; 351(6269): 147-50, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26676354

ABSTRACT

Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal's second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away.


Subject(s)
Disasters/history , Earthquakes/history , Cities , Earthquakes/mortality , Fossils , Geologic Sediments/chemistry , History, Medieval , Humans , Nepal , Plants/chemistry , Radiometric Dating , Rivers , Soil/chemistry , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...