Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 20(2): 398-418, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20405795

ABSTRACT

Migratory bird needs must be met during four phases of the year: breeding season, fall migration, wintering, and spring migration; thus, management may be needed during all four phases. The bulk of research and management has focused on the breeding season, although several issues remain unsettled, including the spatial extent of habitat influences on fitness and the importance of habitat on the breeding grounds used after breeding. Although detailed investigations have shed light on the ecology and population dynamics of a few avian species, knowledge is sketchy for most species. Replication of comprehensive studies is needed for multiple species across a range of areas, Information deficiencies are even greater during the wintering season, when birds require sites that provide security and food resources needed for survival and developing nutrient reserves for spring migration and, possibly, reproduction. Research is needed on many species simply to identify geographic distributions, wintering sites, habitat use, and basic ecology. Studies are complicated, however, by the mobility of birds and by sexual segregation during winter. Stable-isotope methodology has offered an opportunity to identify linkages between breeding and wintering sites, which facilitates understanding the complete annual cycle of birds. The twice-annual migrations are the poorest-understood events in a bird's life. Migration has always been a risky undertaking, with such anthropogenic features as tall buildings, towers, and wind generators adding to the risk. Species such as woodland specialists migrating through eastern North America have numerous options for pausing during migration to replenish nutrients, but some species depend on limited stopover locations. Research needs for migration include identifying pathways and timetables of migration, quality and distribution of habitats, threats posed by towers and other tall structures, and any bottlenecks for migration. Issues such as human population growth, acid deposition, climate change, and exotic diseases are global concerns with uncertain consequences to migratory birds and even less-certain remedies. Despite enormous gaps in our understanding of these birds, research, much of it occurring in the past 30 years, has provided sufficient information to make intelligent conservation efforts but needs to expand to handle future challenges.


Subject(s)
Animal Migration/physiology , Birds/growth & development , Birds/physiology , Conservation of Natural Resources/methods , Animals , Models, Theoretical , Population Dynamics
2.
Ecol Appl ; 19(1): 55-68, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19323173

ABSTRACT

For the purposes of making many informed conservation decisions, the main goal for data collection is to assess population status and allow prediction of the consequences of candidate management actions. Reducing the bias and variance of estimates of population parameters reduces uncertainty in population status and projections, thereby reducing the overall uncertainty under which a population manager must make a decision. In capture-recapture studies, imperfect detection of individuals, unobservable life-history states, local movement outside study areas, and tag loss can cause bias or precision problems with estimates of population parameters. Furthermore, excessive disturbance to individuals during capture-recapture sampling may be of concern because disturbance may have demographic consequences. We address these problems using as an example a monitoring program for Black-footed Albatross (Phoebastria nigripes) and Laysan Albatross (Phoebastria immutabilis) nesting populations in the northwestern Hawaiian Islands. To mitigate these estimation problems, we describe a synergistic combination of sampling design and modeling approaches. Solutions include multiple capture periods per season and multistate, robust design statistical models, dead recoveries and incidental observations, telemetry and data loggers, buffer areas around study plots to neutralize the effect of local movements outside study plots, and double banding and statistical models that account for band loss. We also present a variation on the robust capture-recapture design and a corresponding statistical model that minimizes disturbance to individuals. For the albatross case study, this less invasive robust design was more time efficient and, when used in combination with a traditional robust design, reduced the standard error of detection probability by 14% with only two hours of additional effort in the field. These field techniques and associated modeling approaches are applicable to studies of most taxa being marked and in some cases have individually been applied to studies of birds, fish, herpetofauna, and mammals.


Subject(s)
Charadriiformes/physiology , Ecosystem , Research Design , Animals , Models, Biological , Models, Statistical , Population Dynamics , Sample Size
3.
J Anim Ecol ; 75(1): 221-7, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16903059

ABSTRACT

1. Increases in global temperatures have created concern about effects of climatic variability on populations, and climate has been shown to affect population dynamics in an increasing number of species. Testing for effects of climate on population densities across a species' distribution allows for elucidation of effects of climate that would not be apparent at smaller spatial scales. 2. Using autoregressive population models, we tested for effects of the North Atlantic Oscillation (NAO) and the El Niño Southern Oscillation (ENSO) on annual population densities of a North American migratory landbird, the yellow-billed cuckoo Coccyzus americanus, across the species' breeding distribution over a 37-year period (1966-2002). 3. Our results indicate that both the NAO and ENSO have affected population densities of C. americanus across much of the species' breeding range, with the strongest effects of climate in regions in which these climate systems have the strongest effects on local temperatures. Analyses also indicate that the strength of the effect of local temperatures on C. americanus populations was predictive of long-term population decline, with populations that were more negatively affected by warm temperatures experiencing steeper declines. 4. Results of this study highlight the importance of distribution-wide analyses of climatic effects and demonstrate that increases in global temperatures have the potential to lead to additional population declines.


Subject(s)
Birds/growth & development , Birds/physiology , Climate , Animals , Canada , Population Density , Population Dynamics , Population Growth , Species Specificity , Temperature , United States
4.
Mol Ecol ; 12(10): 2835-43, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12969485

ABSTRACT

We used mark-resight data and amplified fragment length polymorphism (AFLP) markers to assess movements and gene flow between Central Pacific breeding colonies of the great frigatebird, Fregata minor. Of 715 adult frigatebirds marked on Tern Island and Johnston Atoll, 21.3% were resighted at other frigatebird colonies at least 582 km away. Mark-resight data indicated regular movement of males and females between Tern Island and Johnston Atoll (873 km apart), and less frequent movements to other islands; no birds marked on Tern or Johnston were seen on Christmas Island, but one was seen in the Philippines, 7627 km from where it was marked. Despite the regular occurrence of interisland movements, Bayesian analyses of AFLP data showed significant genetic differentiation between Tern Island and Johnston Atoll, and more pronounced differentiation between these two islands and the more distant Christmas Island. The AFLP profiles of three birds breeding on Tern Island fell within the profile-cluster typical for Christmas Island birds, both in a nonmetric multidimensional scaling analysis and in a population assignment test, suggesting dispersal events from Christmas Island to Tern Island. Several factors could explain the persistence of genetic structure despite frequent movements between colonies: many movements occurred during the nonbreeding season, many breeding-season movements did not involve mate-acquisition behaviours and individuals that do disperse may be selected against, as suggested by morphometric differences between colonies. The persistence of genetic structure among breeding colonies despite significant interisland movements suggests limits to the effectiveness of migration as a homogenizing force in this broadly distributed, extremely mobile species.


Subject(s)
Animal Migration , Birds/genetics , Birds/physiology , Genetic Variation , Geography , Animals , Bayes Theorem , Body Weights and Measures , DNA Primers , Genetics, Population , Polymorphism, Restriction Fragment Length , Polynesia
SELECTION OF CITATIONS
SEARCH DETAIL
...