Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 35(1): 117-26, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15737586

ABSTRACT

Short INterspersed Elements (SINEs) make very useful phylogenetic markers because the integration of a particular element at a location in the genome is irreversible and of known polarity. These attributes make analysis of SINEs as phylogenetic characters an essentially homoplasy-free affair. Alu elements are primate-specific SINEs that make up a large portion of the human genome and are also widespread in other primates. Using a combination wet-bench and computational approach we recovered 190 Alu insertions, 183 of which are specific to the genomes of nine New World primates. We used these loci to investigate branching order and have produced a cladogram that supports a sister relationship between Atelidae (spider, woolly, and howler monkeys) and Cebidae (marmosets, tamarins, and owl monkeys) and then the joining of this two family clade to Pitheciidae (titi and saki monkeys). The data support these relationships with a homoplasy index of 0.00. In this study, we report one of the largest applications of SINE elements to phylogenetic analysis to date, and the results provide a robust molecular phylogeny for platyrrhine primates.


Subject(s)
Alu Elements , Cebidae/genetics , Phylogeny , Animals , Base Sequence , DNA Primers , Humans , Polymerase Chain Reaction
2.
J Mol Biol ; 342(1): 109-18, 2004 Sep 03.
Article in English | MEDLINE | ID: mdl-15313610

ABSTRACT

The Alu Ya-lineage is a group of related, short interspersed elements (SINEs) found in primates. This lineage includes subfamilies Ya1-Ya5, Ya5a2 and others. Some of these subfamilies are still actively mobilizing in the human genome. We have analyzed 2482 elements that reside in the human genome draft sequence and focused our analyses on the 2318 human autosomal Ya Alu elements. A total of 1470 autosomal loci were subjected to polymerase chain reaction (PCR)-based assays that allow analysis of individual Ya-lineage Alu elements. About 22% (313/1452) of the Ya-lineage Alu elements were polymorphic for the insertion presence on human autosomes. Less than 0.01% (5/1452) of the Ya-lineage loci analyzed displayed insertions in orthologous loci in non-human primate genomes. DNA sequence analysis of the orthologous inserts showed that the orthologous loci contained older pre-existing Y, Sc or Sq Alu subfamily elements that were the result of parallel forward insertions or involved in gene conversion events in the human lineage. This study is the largest analysis of a group of "young", evolutionarily related human subfamilies. The size, evolutionary age and variable allele insertion frequencies of several of these subfamilies makes members of the Ya-lineage useful tools for human population studies and primate phylogenetics.


Subject(s)
Alu Elements , Evolution, Molecular , Genome, Human , Sequence Analysis, DNA , Animals , Cell Line , Chromosomes, Human , Databases, Nucleic Acid , Gene Conversion , Humans , Molecular Sequence Data , Polymorphism, Genetic
3.
Genomics ; 83(3): 518-27, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14962678

ABSTRACT

We have designed and evaluated a series of class-specific (Aves), order-specific (Rodentia), and species-specific (equine, canine, feline, rat, hamster, guinea pig, and rabbit) polymerase chain reaction (PCR)-based assays for the identification and quantitation of DNA using amplification of genome-specific short and long interspersed elements. Using SYBR Green-based detection, the minimum effective quantitation levels of the assays ranged from 0.1 ng to 0.1 pg of starting DNA template. Background cross-amplification with DNA templates derived from sixteen other species was negligible prior to 30 cycles of PCR. The species-specificity of the PCR amplicons was further demonstrated by the ability of the assays to accurately detect known quantities of species-specific DNA from mixed (complex) sources. The 10 assays reported here will help facilitate the sensitive detection and quantitation of common domestic animal and bird species DNA from complex biomaterials.


Subject(s)
DNA/genetics , Genome , Interspersed Repetitive Sequences , Polymerase Chain Reaction/methods , Animals , DNA/analysis , Linear Models , Mammals/genetics , Sensitivity and Specificity , Species Specificity
4.
Anal Biochem ; 316(2): 259-69, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12711348

ABSTRACT

We have designed and evaluated four assays based upon PCR amplification of short interspersed elements (SINEs) for species-specific detection and quantitation of bovine, porcine, chicken, and ruminant DNA. The need for these types of approaches has increased drastically in response to the bovine spongiform encephalopathy epidemic. Using SYBR Green-based detection, the minimum effective quantitation levels were 0.1, 0.01, 5, and 1 pg of starting DNA template using our bovine, porcine, chicken, and ruminant species-specific SINE-based PCR assays, respectively. Background cross-amplification with DNA templates derived from 14 other species was negligible. Species specificity of the PCR amplicons was further demonstrated by the ability of the assays to accurately detect trace quantities of species-specific DNA from mixed (complex) sources. Bovine DNA was detected at 0.005% (0.5 pg), porcine DNA was detected at 0.0005% (0.05 pg), and chicken DNA was detected at 0.05% (5 pg) in a 10-ng mixture of bovine, porcine, and chicken DNA templates. We also tested six commercially purchased meat products using these assays. The SINE-based PCR methods we report here are species-specific, are highly sensitive, and will improve the detection limits for DNA sequences derived from these species.


Subject(s)
DNA/analysis , Polymerase Chain Reaction/methods , Short Interspersed Nucleotide Elements/genetics , Adult , Animals , Cattle , Chickens , DNA Primers , Humans , Meat Products/analysis , Ruminants , Species Specificity , Swine , Templates, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...