Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
Add more filters










Publication year range
1.
Drug Metab Rev ; 53(1): 76-99, 2021 02.
Article in English | MEDLINE | ID: mdl-33264039

ABSTRACT

Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.


Subject(s)
Biotransformation , Humans , Oxidation-Reduction
2.
Crit Rev Toxicol ; 49(10): 819-929, 2019 11.
Article in English | MEDLINE | ID: mdl-31944156

ABSTRACT

The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate ß-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.


Subject(s)
Acetylcysteine/metabolism , Biotransformation/physiology , Xenobiotics/metabolism , Cysteine/metabolism , Glutathione/metabolism , Leukotrienes/metabolism
3.
Toxicology ; 388: 21-29, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28179188

ABSTRACT

Exposure to diacetyl and related α-diketones causes respiratory-tract damage in humans and experimental animals. Chemical toxicity is often associated with covalent modification of cellular nucleophiles by electrophilic chemicals. Electrophilic α-diketones may covalently modify nucleophilic arginine residues in critical proteins and, thereby, produce the observed respiratory-tract pathology. The major pathway for the biotransformation of α-diketones is reduction to α-hydroxyketones (acyloins), which is catalyzed by NAD(P)H-dependent enzymes of the short-chain dehydrogenase/reductase (SDR) and the aldo-keto reductase (AKR) superfamilies. Reduction of α-diketones to the less electrophilic acyloins is a detoxication pathway for α-diketones. The pyruvate dehydrogenase complex may play a significant role in the biotransformation of diacetyl to CO2. The interaction of toxic electrophilic chemicals with cellular nucleophiles can be predicted by the hard and soft, acids and bases (HSAB) principle. Application of the HSAB principle to the interactions of electrophilic α-diketones with cellular nucleophiles shows that α-diketones react preferentially with arginine residues. Furthermore, the respiratory-tract toxicity and the quantum-chemical reactivity parameters of diacetyl and replacement flavorant α-diketones are similar. Hence, the identified replacement flavorant α-diketones may pose a risk of flavorant-induced respiratory-tract toxicity. The calculated indices for the reaction of α-diketones with arginine support the hypothesis that modification of protein-bound arginine residues is a critical event in α-diketone-induced respiratory-tract toxicity.


Subject(s)
Diacetyl/toxicity , Flavoring Agents/toxicity , Occupational Exposure/adverse effects , Animals , Diacetyl/chemistry , Diacetyl/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Humans , Ketones/chemistry , Ketones/metabolism , Ketones/toxicity , Occupational Diseases/chemically induced , Respiratory Tract Diseases/chemically induced
4.
Mol Pharmacol ; 90(3): 214-24, 2016 09.
Article in English | MEDLINE | ID: mdl-27338081

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) have emerging roles in development and tissue maintenance and is the most prevalent GPCR subclass mutated in human cancers, but to date, no drugs have been developed to target them in any disease. aGPCR extracellular domains contain a conserved subdomain that mediates self-cleavage proximal to the start of the 7-transmembrane domain (7TM). The two receptor protomers, extracellular domain and amino terminal fragment (NTF), and the 7TM or C-terminal fragment remain noncovalently bound at the plasma membrane in a low-activity state. We recently demonstrated that NTF dissociation liberates the 7TM N-terminal stalk, which acts as a tethered-peptide agonist permitting receptor-dependent heterotrimeric G protein activation. In many cases, natural aGPCR ligands are extracellular matrix proteins that dissociate the NTF to reveal the tethered agonist. Given the perceived difficulty in modifying extracellular matrix proteins to create aGPCR probes, we developed a serum response element (SRE)-luciferase-based screening approach to identify GPR56/ADGRG1 small-molecule inhibitors. A 2000-compound library comprising known drugs and natural products was screened for GPR56-dependent SRE activation inhibitors that did not inhibit constitutively active Gα13-dependent SRE activation. Dihydromunduletone (DHM), a rotenoid derivative, was validated using cell-free aGPCR/heterotrimeric G protein guanosine 5'-3-O-(thio)triphosphate binding reconstitution assays. DHM inhibited GPR56 and GPR114/ADGRG5, which have similar tethered agonists, but not the aGPCR GPR110/ADGRF1, M3 muscarinic acetylcholine, or ß2 adrenergic GPCRs. DHM inhibited tethered peptide agonist-stimulated and synthetic peptide agonist-stimulated GPR56 but did not inhibit basal activity, demonstrating that it antagonizes the peptide agonist. DHM is a novel aGPCR antagonist and potentially useful chemical probe that may be developed as a future aGPCR therapeutic.


Subject(s)
Benzopyrans/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Retinoids/pharmacology , Small Molecule Libraries/pharmacology , Animals , Benzopyrans/analysis , Benzopyrans/chemistry , Cell Adhesion/drug effects , Flavonoids/pharmacology , HEK293 Cells , High-Throughput Screening Assays , Humans , Peptides/agonists , Peptides/pharmacology , Receptors, G-Protein-Coupled/metabolism , Reproducibility of Results , Retinoids/analysis , Retinoids/chemistry , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry
5.
Mitochondrion ; 13(5): 454-63, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23123918

ABSTRACT

Oxidative stress plays a role in a range of human disease entities. Hence, strategies to target antioxidants to mitochondria are an active area of investigation. Triphenylphosphonium cation-based antioxidants and SS-peptides have been described and show significant uptake by mitochondria and effectiveness in animal models of conditions linked to oxidative stress. We tested the hypothesis that the mitochondrial ß-oxidation pathway could be exploited to activate the antioxidant phenolic and methimazole prodrugs. Most compounds studied underwent mitochondrial biotransformation to release their antioxidant moieties, and some were cytoprotective in a hypoxia-reoxygenation model in rat cardiomyocytes. These results demonstrate the feasibility of exploiting mitochondrial bioactivation reactions for targeted drug delivery.


Subject(s)
Antioxidants/metabolism , Drug Delivery Systems/methods , Metabolic Networks and Pathways , Methimazole/metabolism , Mitochondria/metabolism , Phenols/metabolism , Xenobiotics/metabolism , Animals , Biotransformation , Humans , Oxidation-Reduction , Oxidative Stress , Prodrugs/metabolism
6.
Synth Commun ; 43(1): 1-8, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-24882887

ABSTRACT

The syntheses of 3-(1-methyl-1H-imidazol-2-ylthio)acrylic acid and 3-(1-methyl-1H-imidazol-2-ylthio)propanoic acid, mitochondria-targeted prodrugs of the antioxidant methimazole, are described. The method of Fan et al. (Fan et al., Synthesis2006, 2286) for the reaction of phenols with propiolic acid and propiolate esters was modified to synthesize (E)-3-(1-methyl-1H-imidazol-2-ylthio)acrylic acid. The intermediate tert-butyl (E)-3-(1-methyl-1H-imidazol-2-ylthio)acrylate was prepared by the reaction of tert-butyl propiolate with methimazole; the use of tert-butyl propiolate rather than methyl propiolate gave tert-butyl (E)-3-(1-methyl-1H-imidazol-2-ylthio)acrylate as the predominant isomer. Acid hydrolysis of the intermediate ester afforded the target compound. 3-(1-Methyl-1H-imidazol-2-ylthio)propanoic acid was synthesized from 3-bromopropanoic acid and methimazole under conditions that gave preferential substitution on sulfur and minimized substitution on nitrogen.

7.
Drug Metab Rev ; 43(2): 215-25, 2011 May.
Article in English | MEDLINE | ID: mdl-21303221

ABSTRACT

Glutathione transferase zeta (GSTZ1) is a member of the GST superfamily of proteins that catalyze the reaction of glutathione with endo- and xenobiotics. GSTZ1-1 was discovered by a bioinformatics strategy that searched the human-expressed sequence-tag database with a sequence that matched a putative plant GST. A sequence that was found was expressed and termed GSTZ1-1. In common with other GSTs, GSTZ1-1 showed some peroxidase activity, but lacked activity with most known GST substrates. GSTZ1-1 was also found to be identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the tyrosine-degradation pathway. Further studies showed that dichloroacetate (DCA) and a range of α-haloalkanoates and α,α-dihaloalkanoates were substrates. A subsequent search of the human-expressed sequence-tag database showed the presence of four polymorphic alleles: 1a, 1b, 1c, and 1d; GSTZ1c was the most common and was designated as the wild-type gene. DCA was shown to be a k(cat) inactivator of human, rat, and mouse GSTZ1-1; human GSTZ1-1 was more resistant to inactivation than mouse or rat GSTZ1-1. Proteomic analysis showed that hGSTZ1-1 was inactivated when Cys-16 was modified by glutathione and the carbon skeleton of DCA. The polymorphic variants of hGSTZ1-1 differ in their susceptibility to inactivation, with 1a-1a being more resistant to inactivation than the other variants. The targeted deletion of GSTZ1 yielded mice that were not phenotypically distinctive. Phenylalanine proved, however, to be toxic to Gstz1(-/-) mice, and these mice showed evidence of organ damage and leucopenia.


Subject(s)
Glutathione Transferase , Polymorphism, Genetic , Animals , Catalysis , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/genetics , Glutathione Transferase/physiology , Humans , Mice , Mice, Knockout , Molecular Structure , Phylogeny , Substrate Specificity
8.
Chem Biol Interact ; 192(1-2): 8-13, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-20971100

ABSTRACT

The goal of this research was to test the hypothesis that bioactivation reactions could be exploited to deliver and activate mitochondria-targeted antioxidant prodrugs. The concept that bioactivation reactions could be used for prodrug delivery and activation has received little attention. Most bioactivation reactions result in the conversion of the parent drug to a reactive electrophilic metabolite, but bioactivating enzymes that catalyze elimination or hydrolytic reactions may offer potential for targeted drug delivery. Because mitochondria are the major cellular source of reactive oxygen species, there is much interest in targeting antioxidants to mitochondria. Previous studies showed that the mitochondrial fatty acid ß-oxidation pathway biotransforms a range of xenobiotic alkanoates, including ω-(phenyl)alkanoates and ω-(phenoxy)alkanoates. 5,6-Dichloro-4-thia-5-hexenoate, the desamino analog of S-(1,2-dichlorovinyl)-l-cysteine, is biotransformed by the fatty acid ß-oxidation pathway. Hence, the prodrugs ω-(phenoxy)alkanoates, 3-(phenoxy)acrylates, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoates were expected to undergo biotransformation by the mitochondrial ß-oxidation pathway to release phenolic antioxidants and the antioxidant methimazole (Roser et al., Bioorg. Med. Chem. 18 (2010) 1441-1448). The rates of biotransformation of ω-(phenoxy)alkanoates varied with the structure, and bulky substituents on the phenoxy moiety reduced rates of biotransformation; this was attributed to substrate limitations imposed by the medium-chain acyl-CoA dehydrogenase. Hence, 3-(2,6-dimethylphenoxy)acrylate was prepared; it was expected that, after conversion to its CoA thioester, 3-(2,6-dimethylphenoxy)acryloyl-CoA would be a substrate for enoyl-CoA hydratase. This expectation was correct: 3-(2,6-dimethylphenoxy)acrylate was an excellent substrate. ω-(1-Methyl-1H-imidazol-2-ylthio)alkanoates were also good substrates for the ß-oxidation pathway. Significantly, 3-(2,6-dimethylphenoxy)propanoate, 3-(2,6-dimethylphenoxy)acrylate, and 3-(1-methyl-1H-imidazol-2-ylthio)propanoate were cytoprotective in a hypoxia-reoxygenation model in rat cardiomyocytes. These results demonstrate the feasibility of exploiting bioactivation reactions for targeted drug delivery.


Subject(s)
Antioxidants/pharmacology , Mitochondria/metabolism , Xenobiotics/pharmacokinetics , Animals , Biocatalysis , Biotransformation , Rats
10.
Bioorg Med Chem ; 18(4): 1441-8, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20129794

ABSTRACT

Mitochondrial reactive oxygen species (ROS) generation and the attendant mitochondrial dysfunction are implicated in a range of disease states. The objective of the present studies was to test the hypothesis that the mitochondrial beta-oxidation pathway could be exploited to deliver and biotransform the prodrugs omega-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and omega-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids to the corresponding phenolic antioxidants or methimazole. 3- and 5-(Phenoxy)alkanoic acids and methyl-substituted analogs were biotransformed to phenols; rates of biotransformation decreased markedly with methyl-group substitution on the phenoxy moiety. 2,6-Dimethylphenol formation from the analogs 3-([2,6-dimethylphenoxy]methylthio)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid was greater than that observed with omega-(2,6-dimethylphenoxy)alkanoic acids. 3- and 5-(1-Methyl-1H-imidazol-2-ylthio)alkanoic acids were rapidly biotransformed to the antioxidant methimazole and conferred significant cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. Both 3-(2,6-dimethylphenoxy)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid also afforded cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. These results demonstrate that mitochondrial beta-oxidation is a potentially useful delivery system for targeting antioxidants to mitochondria.


Subject(s)
Acrylates/metabolism , Alkanes/metabolism , Cytoprotection/drug effects , Mitochondria/metabolism , Prodrugs/metabolism , Alkanes/pharmacology , Biotransformation , Magnetic Resonance Spectroscopy , Prodrugs/pharmacology , Reactive Oxygen Species/metabolism , Spectrometry, Mass, Electrospray Ionization
11.
Chem Res Toxicol ; 21(1): 145-59, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17696489

ABSTRACT

The concept that reactive intermediate formation during the biotransformation of drugs and chemicals is an important bioactivation mechanism was proposed in the 1970s and is now accepted as a major mechanism for xenobiotic-induced toxicity. The enzymology of reactive intermediate formation as well as the characterization of the formation and fate of reactive intermediates are now well-established. The mechanism by which reactive intermediates cause cell damage and death is, however, still poorly understood. Although most xenobiotic-metabolizing enzymes catalyze the bioactivation of chemicals, glutathione-dependent biotransformation has been largely associated with detoxication processes, particularly mercapturic acid formation. Abundant evidence now shows that glutathione-dependent biotransformation constitutes an important bioactivation mechanism for halogen-containing drugs and chemicals and has for many compounds been implicated in their organ-selective toxicity and in their mutagenic and carcinogenic potential. The glutathione-dependent biotransformation of haloalkenes is the first step in the cysteine S-conjugate beta-lyase pathway for the bioactivation of nephrotoxic haloalkenes. This pathway has been a rich source of reactive intermediates, including thioacyl halides, alpha-chloroalkenethiolates, 3-halo-alpha-thiolactones, 2,2,3-trihalothiiranes, halothioketenes, and vinylic sulfoxides. Glutathione-dependent bioactivation of gem-dihalomethanes and 1,2-, 1,3-, and 1,4-dihaloalkanes leads to the formation of alpha-chlorosulfides, thiiranium ions, sulfenate esters, and tetrahydrothiophenium ions, respectively, and these reactions lead to reactive intermediate formation.


Subject(s)
Biotransformation/physiology , Glutathione/metabolism , Halogens/metabolism , Halogens/toxicity , Animals , Enzymes/metabolism , Health , Humans , Xenobiotics/metabolism , Xenobiotics/toxicity
12.
Anal Biochem ; 374(1): 25-30, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18028863

ABSTRACT

Glutathione transferase omega 1-1 (GSTO1-1) catalyzes the biotransformation of arsenic and is implicated as a factor influencing the age-at-onset of Alzheimer's disease and the posttranslational activation of interleukin 1beta (IL-1beta). Investigation of the biological role of GSTO1-1 variants has been hampered by the lack of a specific assay for GSTO1-1 activity in tissue samples that contain other GSTs and other enzymes with similar catalytic specificities. Previous studies (P. G. Board and M. W. Anders, Chem. Res. Toxicol. 20 (2007) 149-154) have shown that GSTO1-1 catalyzes the reduction of S-(phenacyl)glutathiones to acetophenones. A new substrate, S-(4-nitrophenacyl)glutathione (4NPG), has been prepared and found to have a high turnover with GSTO1-1 but negligible activity with GSTO2-2 and other members of the glutathione transferase superfamily. A spectrophotometric assay with 4NPG as a substrate has been used to determine GSTO1-1 activity in several human breast cancer cell lines and in mouse liver and brain tissues.


Subject(s)
Glutathione Transferase/metabolism , Glutathione/analogs & derivatives , Animals , Breast Neoplasms/enzymology , Cell Line, Tumor , Glutathione/metabolism , Humans , Mice , Spectrophotometry, Ultraviolet
13.
Chem Res Toxicol ; 20(1): 149-54, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17226937

ABSTRACT

S-(Phenacyl)glutathione reductase (SPG-R) plays a significant role in the biotransformation of reactive alpha-haloketones to nontoxic acetophenones. Comparison of the apparent subunit size, amino acid composition, and catalysis of the reduction of S-(phenacyl)glutathiones indicated that a previously described rat SPG-R (Kitada, M., McLenithan, J. C., and Anders, M. W. (1985) J. Biol. Chem. 260, 11749-11754) is homologous to the omega-class glutathione transferase GSTO1-1. The available data show that the SPG-R reaction is catalyzed by GSTO1-1 and not by other GSTs, including the closely related GSTO2-2 isoenzyme. In the proposed reaction mechanism, the active-site cysteine residue of GSTO1-1 reacts with the S-(phenacyl)glutathione substrate to give an acetophenone and a mixed disulfide with the active-site cysteine; a second thiol substrate (e.g., glutathione or 2-mercaptoethanol) reacts with the active-site disulfide to regenerate the catalytically active enzyme and to form a mixed disulfide. A new spectrophotometric assay was developed that allows the rapid determination of SPG-R activity and specific measurement of GSTO1-1 in the presence of other GSTs. This is the first specific reaction attributed to GSTO1-1, and these results demonstrate the catalytic diversity of GSTO1-1, which, in addition to SPG-R activity, catalyzes the reduction of dehydroascorbate and monomethylarsonate(V) and also possesses thioltransferase and GST activity.


Subject(s)
Glutathione Transferase/metabolism , Glutathione/metabolism , Ketones/metabolism , Animals , Catalysis , Chromatography, Liquid , Cytosol/enzymology , Hydrogen-Ion Concentration , Nuclear Magnetic Resonance, Biomolecular , Rats , Spectrometry, Mass, Electrospray Ionization
14.
Expert Opin Drug Metab Toxicol ; 2(1): 71-9, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16863469

ABSTRACT

The identification of the mitochondrion as the gatekeeper of the life and death of a cell and the appreciation of the role of mitochondrial dysfunction in a range of clinical disease processes have made the mitochondrion a target for drug delivery. Accordingly, strategies are being developed for the targeted delivery of antioxidants to mitochondria. Recent studies show that triphenylphosphonium-based antioxidants and amino acid- and peptide-based antioxidants protect mitochondria against oxidative insult. Future studies will undoubtedly exploit the unique biophysical and biochemical properties of mitochondria, including mitochondrial activation of prodrugs, for the targeted delivery of cytoprotective agents.


Subject(s)
Drug Delivery Systems/methods , Mitochondria/metabolism , Oxidative Stress/physiology , Animals , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Drug Delivery Systems/trends , Humans , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/pathology , Multiple Organ Failure/metabolism , Multiple Organ Failure/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Oxidative Stress/drug effects
15.
Drug Metab Dispos ; 34(8): 1406-10, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16720684

ABSTRACT

N-Alkylperfluorooctanesulfonamides have been used in a range of industrial and commercial applications. Perfluorooctanesulfonamide (FOSA) is a major metabolite of N-alkylperfluorooctanesulfonamides and has a long half-life in animals and in the environment and is biotransformed to FOSA N-glucuronide. The objective of this study was to identify and characterize the human and experimental animal liver UDP-glucuronosyltransferases (UGTs) that catalyze the N-glucuronidation of FOSA. The results showed that pooled human liver and rat liver microsomes had high N-glucuronidation activities. Expressed rat UGT1.1, UGT2B1, and UGT2B12 in HK293 cells catalyzed the N-glucuronidation of FOSA but at rates that were lower than those observed in rat liver microsomes. Of the 10 expressed human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B15, and 2B17) studied, only hUGT2B4 and hUGT2B7 catalyzed the N-glucuronidation of FOSA. The kinetics of N-glucuronidation of FOSA by rat liver microsomes and by hUGT2B4/7 was consistent with a single-enzyme Michaelis-Menten model, whereas human liver microsomes showed sigmoidal kinetics. These data show that rat liver UGT1.1, UGT2B1, and UGT2B12 catalyze the N-glucuronidation of FOSA, albeit at low rates, and that hUGT2B4 and hUGT2B7 catalyze the N-glucuronidation of FOSA.


Subject(s)
Fluorocarbons/metabolism , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Sulfonamides/metabolism , Animals , Dogs , Humans , In Vitro Techniques , Kinetics , Macaca mulatta , Male , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Rats
16.
Pharmacogenet Genomics ; 16(5): 307-13, 2006 May.
Article in English | MEDLINE | ID: mdl-16609361

ABSTRACT

OBJECTIVES: The zeta-class glutathione transferase GSTZ1-1 catalyses the glutathione-dependent isomerization of maleylacetoacetate to fumarylacetoacetate in the tyrosine catabolic pathway and the biotransformation of alpha-halo acids, including dichloroacetic acid (DCA). Genetic polymorphisms in the coding sequence of GSTZ1 result in significant changes in enzyme function, and deficiency of GSTZ1-1 in mice causes induction of a range of Phase-II enzymes. In this study, the potential for polymorphisms in regulatory sequences to alter gene transcription was investigated. METHODS: A total of 10 single-nucleotide polymorphisms (SNP) were identified in African and Australian European subjects in a region extending 1.5-kb upstream of the GSTZ1 start of transcription. These SNPs formed at least 10 haplotypes and only two were shared between the two population samples. The effect of these SNPs on gene expression was evaluated by the transient expression of specific alleles fused to a luciferase reporter gene. RESULTS: Of the 10 SNPs identified, only -1002 G>A and -289 C>T caused significant changes in promoter activity. The -1002 G>A SNP converts a v-Myb site to a S8 homeodomain (Prx2) site, and the -289 C>T SNP abolishes an Egr1 binding site. CONCLUSION: These SNPs may alter GSTZ1 expression, which may alter the pharmacokinetics of DCA, which is used therapeutically for the treatment of lactic acidosis.


Subject(s)
Glutathione Transferase/genetics , Polymorphism, Genetic , Promoter Regions, Genetic , Alleles , Black People , Gene Expression , Genes, Reporter , Glutathione Transferase/classification , Glutathione Transferase/metabolism , Haplotypes , Humans , Luciferases/metabolism , Polymorphism, Single Nucleotide , Transcription Initiation Site , White People
17.
Toxicol Sci ; 91(1): 20-8, 2006 May.
Article in English | MEDLINE | ID: mdl-16507920

ABSTRACT

The U.S. Environmental Protection Agency (U.S. EPA) classifies dichloromethane (DCM) as a "probable human carcinogen," based upon its risk assessment conducted in the late 1980s (http://www.epa.gov/iris/subst/0070.htm). Since that time, cancer risk-assessment practices have evolved, leading to improved scientifically based methods for estimating risk and for illuminating as well as reducing residual uncertainties. A new physiologically based pharmacokinetic (PBPK) model has been developed, using data from human volunteers exposed to low DCM levels, that provides new information on the human to human variability in DCM metabolism and elimination (L. M. Sweeney et al., 2004, Toxicol. Lett. 154, 201-216). This information, along with data from other published human studies, has been used to develop a new cancer risk estimation model utilizing probabilistic methodology similar to that employed recently by U.S. EPA for other chemicals (ENVIRON Health Sciences Institute, 2005, Development of population cancer risk estimates for environmental exposure to dichloromethane using a physiologically based pharmacokinetic model. Final Report to Eastman Kodak Company). This article summarizes the deliberations of a scientific peer-review panel convened on 3 and 4 May 2005 at the CIIT Centers for Health Research in Research Triangle Park, North Carolina, to review the "state of the science" for DCM and to critically evaluate the new information for its utility in assessing potential human cancer risks from DCM exposure. The panel (Melvin E Andersen, CIIT Centers for Health Research, Research Triangle Park, NC 27709; A. John Bailer, Miami University, Scripps Gerontology Center, Oxford, OH 45056; Kenneth S. Crump, ENVIRON Health Sciences Institute, Ruston, LA 71270; Clifford R. Elcombe, University of Dundee, Biomedical Research Centre, Dundee DD1 9SY, United Kingdom; Linda S. Erdreich, Exponent, 420 Lexington Avenue, Suite 1740, New York, NY 10170; Jeffery W. Fisher, University of Georgia, Department of Environmental Health Science, Athens, GA 30602; David Gaylor, Gaylor and Associates, LLC, Eureka Springs, AR 72631; F Peter Guengerich, Vanderbilt University, Department of Biochemistry, Nashville, TN 37232; Kenneth Mundt, ENVIRON Health Sciences Institute, Amherst, MA 01004; Lorenz R Rhomberg, Gradient Corporation, Cambridge, MA 021138; Charles Timchalk, Pacific Northwest National Laboratory, Richland, WA 99352), chaired by M.E.A., was composed of experts in xenobiotic metabolism and carcinogenic mechanisms, PBPK modeling, epidemiology, biostatistics, and quantitative risk assessment. Observers included representatives from U.S. EPA, CIIT, and Eastman Kodak Company (Kodak), as well as several consultants to Kodak. The workshop was organized and sponsored by Kodak, which employs DCM as a solvent in the production of imaging materials. Overall, the panel concluded that the new models for DCM risk assessment were scientifically and technically sound and represented an advance over those employed in past assessments.


Subject(s)
Carcinogens/toxicity , Methylene Chloride/toxicity , Humans , Pharmacokinetics , Probability , Risk Assessment
18.
Biochim Biophys Acta ; 1762(2): 256-65, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16352423

ABSTRACT

Mitochondria play an important role in controlling the life and death of a cell. Consequently, mitochondrial dysfunction leads to a range of human diseases such as ischemia-reperfusion injury, sepsis, and diabetes. Although the molecular mechanisms responsible for mitochondria-mediated disease processes are not fully elucidated yet, the oxidative stress appears to be critical. Accordingly, strategies are being developed for the targeted delivery of antioxidants to mitochondria. In this review, we shall briefly discuss cellular reactive oxygen species metabolism and its role in pathophysiology; the currently existing antioxidants and possible reasons why they are not effective in ameliorating oxidative stress-mediated diseases; and recent developments in mitochondrially targeted antioxidants and their future promise for disease treatment.


Subject(s)
Antioxidants/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/therapy , Animals , Antioxidants/therapeutic use , Drug Design , Humans , Mitochondria/drug effects , Oxidative Stress , Reactive Oxygen Species/metabolism
19.
Mol Pharmacol ; 69(2): 650-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16278372

ABSTRACT

Glutathione S-transferase (GST) zeta (GSTZ1-1) plays a significant role in the catabolism of phenylalanine and tyrosine, and a deficiency of GSTZ1-1 results in the accumulation of maleylacetoacetate and its derivatives maleylacetone (MA) and succinylacetone. Induction of GST subunits was detected in the liver of Gstz1(-/-) mice by Western blotting with specific antisera and high-performance liquid chromatography analysis of glutathione affinity column-purified proteins. The greatest induction was observed in members of the mu class. Induction of NAD(P)H:quinone oxidoreductase 1 and the catalytic and modifier subunits of glutamate-cysteine ligase was also observed. Many of the enzymes that are induced in Gstz1(-/-) mice are regulated by antioxidant response elements that respond to oxidative stress via the Keap1/Nrf2 pathway. It is significant that diminished glutathione concentrations were also observed in the liver of Gstz1(-/-) mice, which supports the conclusion that under normal dietary conditions, the accumulation of electrophilic intermediates such as maleylacetoacetate and MA results in a high level of oxidative stress. Elevated GST activities in the livers of Gstz1(-/-) mice suggest that GSTZ1-1 deficiency may alter the metabolism of some drugs and xenobiotics. Gstz1(-/-) mice given acetaminophen demonstrated increased hepatotoxicity compared with wild-type mice. This toxicity may be attributed to the increased GST activity or the decreased hepatic concentrations of glutathione, or both. Patients with acquired deficiency of GSTZ1-1 caused by therapeutic exposure to dichloroacetic acid for the clinical treatment of lactic acidosis may be at increased risk of drug- and chemical-induced toxicity.


Subject(s)
Antioxidants/metabolism , Glutathione Transferase/deficiency , Oxidative Stress/genetics , Acetaminophen/metabolism , Acetaminophen/toxicity , Animals , Female , Glutathione/metabolism , Glutathione Transferase/genetics , Isoenzymes/deficiency , Isoenzymes/genetics , Liver/enzymology , Male , Mice , Mice, Mutant Strains , Xenobiotics/metabolism
20.
Annu Rev Pharmacol Toxicol ; 45: 147-76, 2005.
Article in English | MEDLINE | ID: mdl-15832444

ABSTRACT

Toxic degradation products are formed from a range of old and modern anesthetic agents. The common element in the formation of degradation products is the reaction of the anesthetic agent with the bases in the carbon dioxide absorbents in the anesthesia circuit. This reaction results in the conversion of trichloroethylene to dichloroacetylene, halothane to 2-bromo-2-chloro-1,1-difluoroethylene, sevoflurane to 2-(fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (Compound A), and desflurane, isoflurane, and enflurane to carbon monoxide. Dichloroacetylene, 2-bromo-2-chloro-1,1-difluoroethylene, and Compound A form glutathione S-conjugates that undergo hydrolysis to cysteine S-conjugates and bioactivation of the cysteine S-conjugates by renal cysteine conjugate beta-lyase to give nephrotoxic metabolites. The elucidation of the mechanisms of formation and bioactivation of degradation products has allowed for the safe use of anesthetics that may undergo degradation in the anesthesia circuit.


Subject(s)
Anesthetics/metabolism , Anesthetics/toxicity , Anesthetics/chemistry , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...