Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(10): 16777-16787, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34570977

ABSTRACT

In modern Li-based batteries, alloying anode materials have the potential to drastically improve the volumetric and specific energy storage capacity. For the past decade silicon has been viewed as a "Holy Grail" among these materials; however, severe stability issues limit its potential. Herein, we present amorphous substoichiometric silicon nitride (SiNx) as a convertible anode material, which allows overcoming the stability challenges associated with common alloying materials. Such material can be synthesized in a form of nanoparticles with seamlessly tunable chemical composition and particle size and, therefore, be used for the preparation of anodes for Li-based batteries directly through conventional slurry processing. Such SiNx materials were found to be capable of delivering high capacity that is controlled by the initial chemical composition of the nanoparticles. They exhibit an exceptional cycling stability, largely maintaining structural integrity of the nanoparticles and the complete electrodes, thus delivering stable electrochemical performance over the course of 1000 charge/discharge cycles. Such stability is achieved through the in situ conversion reaction, which was herein unambiguously confirmed by pair distribution function analysis of cycled SiNx nanoparticles revealing that active silicon domains and a stabilizing Li2SiN2 phase are formed in situ during the initial lithiation.

2.
Sci Rep ; 8(1): 8634, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29872138

ABSTRACT

Silicon is often regarded as a likely candidate to replace graphite as the main active anode material in next-generation lithium ion batteries; however, a number of problems impacting its cycle stability have limited its commercial relevance. One approach to solving these issues involves the use of convertible silicon sub-oxides. In this work we have investigated amorphous silicon sub-nitride as an alternative convertible silicon compound by comparing the electrochemical performance of a-SiNx thin films with compositions ranging from pure Si to SiN0.89. We have found that increasing the nitrogen content gradually reduces the reversible capacity of the material, but also drastically increases its cycling stability, e.g. 40 nm a-SiN0.79 thin films exhibited a stable capacity of more than 1,500 mAh/g for 2,000 cycles. Consequently, by controlling the nitrogen content, this material has the exceptional ability to be tuned to satisfy a large range of different requirements for capacity and stability.

3.
Ecol Evol ; 2(1): 247-57, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22408740

ABSTRACT

The wide distribution and dominance of invasive inbreeding species in many forest ecosystems seems paradoxical in face of their limited genetic variation. Successful establishment of invasive species in new areas is nevertheless facilitated by clonal reproduction: parthenogenesis, regular self-fertilization, and regular inbreeding. The success of clonal lineages in variable environments has been explained by two models, the frozen niche variation (FNV) model and the general-purpose genotype (GPG) model. We tested these models on a widely distributed forest pest that has been recently established in Costa Rica-the sibling-mating ambrosia beetle Xylosandrus morigerus. Two deeply diverged mitochondrial haplotypes coexist at multiple sites in Costa Rica. We find that these two haplotypes do not differ in their associations with ecological factors. Overall the two haplotypes showed complete overlap in their resource utilization; both genotypes have broad niches, supporting the GPG model. Thus, probable or not, our findings suggest that X. morigerus is a true ecological generalist. Clonal aspects of reproduction coupled with broad niches are doubtless important factors in the successful colonization of new habitats in distant regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...