Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Physiol ; 77: 26-32, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25871726

ABSTRACT

Most insects are chill susceptible and will enter a coma if exposed to sufficiently low temperature. This chill coma has been associated with a failure of the neuromuscular system. Insect heart rate (HR) is determined by intrinsic regulation (muscle pacemaker) with extrinsic (nervous and humoral) input. By examining the continually active heart of five Drosophila species with markedly different cold tolerance, we investigated whether cardiac performance is related to the whole animal critical thermal minimum (CTmin). Further, to separate the effects of cold on extrinsic and intrinsic regulators of HR, we measured HR under similar conditions in decapitated flies as well as amputated abdomens of Drosophila montana. Cardiac performance was assessed from break points in HR-temperature relationship (Arrhenius break point, ABP) and from the HR cessation temperature. Among the five species, we found strong relationships for both the HR-ABP and HR cessation temperatures to whole animal CTmin, such that temperate Drosophila species maintained cardiac function at considerably lower temperatures than their tropical congeners. Hearts of amputated abdomens, with reduced extrinsic input, had a higher thermal sensitivity and a significantly lower break point temperature, suggesting that central neuronal input is important for stimulating HR at low temperatures.


Subject(s)
Drosophila/physiology , Acclimatization , Animals , Cold Temperature , Female , Heart/innervation , Heart/physiology , Heart Rate , Species Specificity
2.
J Insect Physiol ; 59(10): 1041-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23932963

ABSTRACT

Low temperature causes loss of neuromuscular function in a wide range of insects, such that the animals enter a state known as chill coma. The ability to recover from chill coma (chill coma recovery time) is often a popular phenotype to characterise chill tolerance in insects. Chill coma in insects has been shown to be associated with a decrease in haemolymph volume and a marked increase in [K(+)], causing dissipation of K(+) equilibrium potential and resting membrane potential. High potassium diet (wheat) has also previously been shown to increase haemolymph [K(+)] in Locusta migratoria leading to sluggish behaviour. The present study combined these two independent stressors of ion and water homeostasis, in order to investigate the role of K(+)- and water-balance during recovery from chill coma, in the chill sensitive insect L. migratoria. We confirmed that cold shock elicits a fast increase in haemolymph [K(+)] which is likely caused by a water shift from the haemolymph to the muscles and other tissues. Recovery of haemolymph [K(+)] is however not only reliant on recovery of haemolymph volume, as the recovery of water and K(+) is decoupled. Chill coma recovery time, after 2h at -4 °C, differed significantly between fasted animals and those fed on high K(+) diet. This difference was not associated with an increased disturbance of haemolymph [K(+)] in the fed animals, instead it was associated with a slowed recovery of muscle [K(+)], muslce water, haemolymph [Na(+)] and K(+)equilibrium potential in the fed animals.


Subject(s)
Cold-Shock Response , Hemolymph/metabolism , Locusta migratoria/physiology , Potassium/metabolism , Water-Electrolyte Balance , Animals , Cold Temperature , Diet , Female , Male
3.
J Exp Biol ; 216(Pt 9): 1630-7, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23348947

ABSTRACT

Chill tolerance of insects is defined as the ability to tolerate low temperature under circumstances not involving freezing of intracellular or extracellular fluids. For many insects chill tolerance is crucial for their ability to persist in cold environments and mounting evidence indicates that chill tolerance is associated with the ability to maintain ion and water homeostasis, thereby ensuring muscular function and preventing chill injury at low temperature. The present study describes the relationship between muscle and haemolymph ion homeostasis and time to regain posture following cold shock (CS, 2 h at -4°C) in the chill-susceptible locust Locusta migratoria. This relationship was examined in animals with and without a prior rapid cold-hardening treatment (RCH, 2 h at 0°C) to investigate the physiological underpinnings of RCH. CS elicited a doubling of haemolymph [K(+)] and this disturbance was greater in locusts pre-exposed to RCH. Recovery of ion homeostasis was, however, markedly faster in RCH-treated animals, which correlated well with whole-organism performance as hardened individuals regained posture faster than non-hardened individuals following CS. The present study indicates that loss and recovery of muscular function are associated with the resting membrane potential of excitable membranes as attested by the changes in the equilibrium potential for K(+) (EK) following CS. Both hardened and non-hardened animals regained movement once K(+) homeostasis had recovered to a fixed level (EK≈-41 mV). RCH is therefore not associated with altered sensitivity to ion disturbance but instead is correlated to a faster recovery of haemolymph [K(+)].


Subject(s)
Adaptation, Physiological , Animal Migration/physiology , Cold Temperature , Homeostasis/physiology , Locusta migratoria/physiology , Stress, Physiological , Animals , Cold-Shock Response/physiology , Hemolymph/metabolism , Ions , Membrane Potentials/physiology , Reproduction/physiology , Sexual Behavior, Animal , Survival Analysis , Time Factors
4.
Environ Manage ; 46(5): 801-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20711780

ABSTRACT

An increased focus on renewable energy has led to the planning and construction of marine wind farms in Europe. Since several terrestrial studies indicate that raptors are especially susceptible to wind turbine related mortality, a Spatial Planning Tool is needed so that wind farms can be sited, in an optimal way, to minimize risk of collisions. Here we use measurements of body mass, wingspan and wing area of eight European raptor species, to calculate their Best Glide Ratio (BGR). The BGR was used to construct a linear equation, which, by the use of initial take-off altitude, could be used to calculate a Theoretical Maximum Distance (TMD) from the coast, attained by these soaring-gliding raptor species. If the nearest turbine, of future marine wind farms, is placed farther away from the coast than the estimated TMD, the collision risk between the turbine blades and these gliding raptors will be minimized. The tool was demonstrated in a case study at the Rødsand II wind farm in Denmark. Data on raptor migration altitude were gathered by radar. From the TMD attained by registered soaring-gliding raptors in the area, we concluded that the Rødsand II wind farm is not sited ideally, from an ornithological point of view, as potentially all three registered species are at risk of gliding through the area swept by the turbine rotor blades, and thereby at risk of colliding with the wind turbines.


Subject(s)
Animal Migration , Conservation of Natural Resources/methods , Falconiformes , Power Plants , Wind , Altitude , Animals , Body Weight , Denmark , Flight, Animal , Planning Techniques , Risk Assessment , Wings, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...