Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 11: 800, 2020.
Article in English | MEDLINE | ID: mdl-33013616

ABSTRACT

Introduction: Diffuse traumatic axonal injury (TAI) is one of the key mechanisms leading to impaired consciousness after severe traumatic brain injury (TBI). In addition, preferential regional expression of TAI in the brain may also influence clinical outcome. Aim: We addressed the question whether the regional expression of microstructural changes as revealed by whole-brain diffusion tensor imaging (DTI) in the subacute stage after severe TBI may predict the duration of post-traumatic amnesia (PTA). Method: Fourteen patients underwent whole-brain DTI in the subacute stage after severe TBI. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for five bilateral brain regions: fronto-temporal, parieto-occipital, and midsagittal hemispheric white matter, as well as brainstem and basal ganglia. Region-specific calculation of mean FA and MD only considered voxels that showed no tissue damage, using an exclusive mask with all voxels that belonged to local brain lesions or microbleeds. Mean FA or MD of the five brain regions were entered in separate partial least squares (PLS) regression analyses to identify patterns of regional microstructural changes that account for inter-individual variations in PTA. Results: For FA, PLS analysis revealed two spatial patterns that significantly correlated with individual PTA. The lower the mean FA values in all five brain regions, the longer that PTA lasted. A pattern characterized by lower FA values in the deeper brain regions relative to the FA values in the hemispheric regions also correlated with longer PTA. Similar trends were found for MD, but opposite in sign. The spatial FA changes as revealed by PLS components predicted the duration of PTA. Individual PTA duration, as predicted by a leave-one-out cross-validation analysis, correlated with true PTA values (Spearman r = 0.68, p permutation = 0.008). Conclusion: Two coarse spatial patterns of microstructural damage, indexed as reduction in FA, were relevant to recovery of consciousness after TBI. One pattern expressed was consistent with diffuse microstructural damage across the entire brain. A second pattern was indicative of a preferential damage of deep midline brain structures.

2.
J Neurotrauma ; 37(4): 581-592, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31588844

ABSTRACT

Severe traumatic brain injury (TBI) produces shearing forces on long-range axons and brain vessels, causing axonal and vascular injury. To examine whether microbleeds and axonal injury colocalize after TBI, we performed whole-brain susceptibility-weighted imaging (SWI) and diffusion tensor imaging (DTI) in 14 patients during the subacute phase after severe TBI. SWI was used to determine the number and volumes of microbleeds in five brain regions: the frontotemporal lobe; parieto-occipital lobe; midsagittal region (cingular cortex, parasagittal white matter, and corpus callosum); deep nuclei (basal ganglia and thalamus); and brainstem. Averaged fractional anisotropy (FA) and mean diffusivity (MD) were measured to assess microstructural changes in the normal appearing white matter attributed to axonal injury in the same five regions. Regional expressions of microbleeds and microstructure were used in a partial least-squares model to predict the impairment of consciousness in the subacute stage after TBI as measured with the Coma Recovery Scale-Revised (CRS-R). Only in the midsagittal region, the expression of microbleeds was correlated with regional changes in microstructure as revealed by DTI. Microbleeds and microstructural DTI-based metrics of deep, but not superficial, brain regions were able to predict individual CRS-R. Our results suggest that microbleeds are not strictly related to axonal pathology in other than the midsagittal region. While each measure alone was predictive, the combination of both metrics scaled best with individual CRS-R. Structural alterations in deep brain structures are relevant in terms of determining the severity of impaired consciousness in the acute stage after TBI.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Adult , Aged , Brain Injuries, Traumatic/pathology , Cerebral Hemorrhage/pathology , Diffusion Tensor Imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , White Matter/pathology , Young Adult
3.
Neuroimage ; 190: 269-274, 2019 04 15.
Article in English | MEDLINE | ID: mdl-29601954

ABSTRACT

A patient with motor conversion disorder presented with a functional paresis of the left hand. After exclusion of structural brain damage, she was repeatedly examined with whole-brain functional magnetic resonance imaging, while she performed visually paced finger-tapping tasks. The dorsal premotor cortex showed a bilateral deactivation in the acute-subacute phase. Recovery from unilateral hand paresis was associated with a gradual increase in task-based activation of the dorsal premotor cortex bilaterally. The right medial prefrontal cortex displayed the opposite pattern, showing initial task-based activation that gradually diminished with recovery. The inverse dynamics of premotor and medial prefrontal activity over time were found during unimanual finger-tapping with the affected and non-affected hand as well as during bimanual finger-tapping. These observations suggest that reduced premotor and increased medial prefrontal activity reflect an effector-independent cortical dysfunction in conversion paresis which gradually disappears in parallel with clinical remission of paresis. The results link the medial prefrontal and dorsal premotor areas to the generation of intentional actions. We hypothesise that an excessive 'veto' signal generated in medial prefrontal cortex along with decreased premotor activity might constitute the functional substrate of conversion disorder. This notion warrants further examination in a larger group of affected patients.


Subject(s)
Conversion Disorder/physiopathology , Fingers/physiopathology , Functional Neuroimaging , Motor Activity/physiology , Motor Cortex/physiopathology , Paresis/physiopathology , Prefrontal Cortex/physiopathology , Recovery of Function/physiology , Adult , Conversion Disorder/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Motor Cortex/diagnostic imaging , Paresis/diagnostic imaging , Prefrontal Cortex/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...