Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 404: 115152, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32726590

ABSTRACT

Energy metabolism and reproduction are closely linked and reciprocally regulated. The detrimental effect of underweight on reproduction complicates the safety evaluation of anti-obesity drugs, making it challenging to distinguish pathological changes mediated through the intended drug-induced weight loss from direct drug effects on reproductive organs. Four-weeks dosing of normal weight Sprague Dawley rats with a glucagon-like peptide 1 (GLP-1)/glucagon receptor co-agonist induced a robust weight loss, accompanied by histological findings in prostate, seminal vesicles, mammary glands, uterus/cervix and vagina. Characterization of the hypothalamus-pituitary-gonadal (HPG) axis in male rats revealed reduced hypothalamic Kiss1 mRNA levels and decreased serum luteinizing hormone (LH) and testosterone concentrations following co-agonist dosing. These alterations resemble hypogonadotropic hypogonadism typically seen in adverse energy deprived conditions, like chronic food restriction. Concomitant daily administration of kisspeptin-52 from day 21 to the end of the four-week co-agonist dosing period evoked LH and testosterone responses without normalizing histological findings. This incomplete rescue by kisspeptin-52 may be due to the rather short kisspeptin-52 treatment period combined with a desensitization observed on testosterone responses. Concomitant leptin treatment from day 21 did not reverse co-agonist induced changes in HPG axis activity. Furthermore, a single co-agonist injection in male rats slightly elevated LH levels but left testosterone unperturbed, thereby excluding a direct acute inhibitory effect on the HPG axis. Our data suggest that the reproductive phenotype after repeated co-agonist administration was driven by the intended weight loss, however, we cannot exclude a direct organ related effect in chronically treated rats.


Subject(s)
Anti-Obesity Agents/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Kisspeptins/pharmacology , Testis/drug effects , Animals , Kisspeptins/administration & dosage , Male , Rats , Rats, Sprague-Dawley , Testis/metabolism , Thinness , Weight Loss/drug effects
2.
Toxicol Pathol ; 46(7): 777-798, 2018 10.
Article in English | MEDLINE | ID: mdl-30343647

ABSTRACT

The obese rodent serves as an indispensable tool for proof-of-concept efficacy and mode-of-action pharmacology studies. Yet the utility of this disease model as an adjunct to the conventional healthy animal in the nonclinical safety evaluation of anti-obesity pharmacotherapies has not been elucidated. Regulatory authorities have recommended employing disease models in toxicology studies when necessary. Our study investigated standard and exploratory toxicology parameters in the high-fat diet (HFD)-induced obese, polygenic Sprague-Dawley rat model in comparison to chow diet (CD)-fed controls. We sought to establish feasibility of the model for safety testing and relevance to human obesity pathophysiology. We report that both sexes fed a 45% kcal HFD for 29 weeks developed obesity and metabolic derangements that mimics to a certain extent, common human obesity. Minor clinical pathologies were observed in both sexes and considered related to CD versus HFD differences. Histopathologically, both sexes exhibited mild obesity-associated findings in brown and subcutaneous white fat, bone, kidneys, liver, lung, pancreas, salivary parotid glands, and skeletal muscle. We conclude that chronic HFD feeding in both sexes led to the development of an obese but otherwise healthy rat. Therefore, the diet-induced obese Sprague-Dawley rat may serve as a suitable model for evaluating toxicity findings encountered with anti-obesity compounds.


Subject(s)
Diet, High-Fat/adverse effects , Disease Models, Animal , Obesity/etiology , Animals , Anti-Obesity Agents/toxicity , Biomarkers/blood , Biomarkers/urine , Body Weight/physiology , Drug Evaluation, Preclinical , Estrous Cycle/physiology , Female , Male , Obesity/blood , Obesity/physiopathology , Obesity/urine , Organ Size/physiology , Organ Specificity/physiology , Proof of Concept Study , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...