Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 483(7388): 169-75, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22398555

ABSTRACT

Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.


Subject(s)
Evolution, Molecular , Genetic Speciation , Genome/genetics , Gorilla gorilla/genetics , Animals , Female , Gene Expression Regulation , Genetic Variation/genetics , Genomics , Humans , Macaca mulatta/genetics , Molecular Sequence Data , Pan troglodytes/genetics , Phylogeny , Pongo/genetics , Proteins/genetics , Sequence Alignment , Species Specificity , Transcription, Genetic
2.
Bull Math Biol ; 74(1): 45-72, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21523510

ABSTRACT

Posttranslational modification of proteins is key in transmission of signals in cells. Many signaling pathways contain several layers of modification cycles that mediate and change the signal through the pathway. Here, we study a simple signaling cascade consisting of n layers of modification cycles such that the modified protein of one layer acts as modifier in the next layer. Assuming mass-action kinetics and taking the formation of intermediate complexes into account, we show that the steady states are solutions to a polynomial in one variable and in fact that there is exactly one steady state for any given total amounts of substrates and enzymes.We demonstrate that many steady-state concentrations are related through rational functions that can be found recursively. For example, stimulus-response curves arise as inverse functions to explicit rational functions. We show that the stimulus-response curves of the modified substrates are shifted to the left as we move down the cascade. Further, our approach allows us to study enzyme competition, sequestration, and how the steady state changes in response to changes in the total amount of substrates.Our approach is essentially algebraic and follows recent trends in the study of posttranslational modification systems.


Subject(s)
Models, Biological , Proteins/metabolism , Kinetics , Protein Processing, Post-Translational , Signal Transduction
3.
PLoS Genet ; 8(12): e1003125, 2012.
Article in English | MEDLINE | ID: mdl-23284294

ABSTRACT

We present a hidden Markov model (HMM) for inferring gradual isolation between two populations during speciation, modelled as a time interval with restricted gene flow. The HMM describes the history of adjacent nucleotides in two genomic sequences, such that the nucleotides can be separated by recombination, can migrate between populations, or can coalesce at variable time points, all dependent on the parameters of the model, which are the effective population sizes, splitting times, recombination rate, and migration rate. We show by extensive simulations that the HMM can accurately infer all parameters except the recombination rate, which is biased downwards. Inference is robust to variation in the mutation rate and the recombination rate over the sequence and also robust to unknown phase of genomes unless they are very closely related. We provide a test for whether divergence is gradual or instantaneous, and we apply the model to three key divergence processes in great apes: (a) the bonobo and common chimpanzee, (b) the eastern and western gorilla, and (c) the Sumatran and Bornean orang-utan. We find that the bonobo and chimpanzee appear to have undergone a clear split, whereas the divergence processes of the gorilla and orang-utan species occurred over several hundred thousands years with gene flow stopping quite recently. We also apply the model to the Homo/Pan speciation event and find that the most likely scenario involves an extended period of gene flow during speciation.


Subject(s)
Evolution, Molecular , Genetic Speciation , Genetic Variation , Genome , Animals , Gene Flow , Genetics, Population , Gorilla gorilla/genetics , Humans , Markov Chains , Models, Theoretical , Pan paniscus/genetics , Pan troglodytes/genetics , Phylogeny , Pongo/genetics , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...