Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
eNeuro ; 11(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38575352

ABSTRACT

The cerebellum has the reputation of being a primitive part of the brain that mostly is involved in motor coordination and motor control. Older lesion studies and more recent electrophysiological studies have, however, indicated that it is involved in temporal perception and temporal expectation building. An outstanding question is whether this temporal expectation building cerebellar activity has functional relevance. In this study, we collected magnetoencephalographic data from 30 healthy participants performing a detection task on at-threshold stimulation that was presented at the end of a sequence of temporally regular or irregular above-threshold stimulation. We found that behavioral detection rates depended on the degree of irregularity in the sequence preceding it. We also found cerebellar responses evoked by above-threshold and at-threshold stimulation. The evoked responses to at-threshold stimulation differed significantly, depending on whether it was preceded by a regular or an irregular sequence. Finally, we found that detection performance across participants correlated significantly with the differences in cerebellar evoked responses to the at-threshold stimulation, demonstrating the functional relevance of cerebellar activity in sensory expectation building. We furthermore found evidence of thalamic involvement, as indicated by responses in the beta band (14-30 Hz) and by significant modulations of cerebello-thalamic connectivity by the regularity of the sequence and the kind of stimulation terminating the sequence. These results provide evidence that the temporal expectation building mechanism of the cerebellum, what we and others have called an internal clock, shows functional relevance by regulating behavior and performance in sensory action that requires acting and integrating evidence over precise timescales.


Subject(s)
Cerebellum , Magnetoencephalography , Time Perception , Humans , Male , Cerebellum/physiology , Female , Adult , Young Adult , Time Perception/physiology , Thalamus/physiology , Sensory Thresholds/physiology , Neural Pathways/physiology
2.
PNAS Nexus ; 3(2): pgae061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38415219

ABSTRACT

Some conscious experiences are more vivid than others. Although perceptual vividness is a key component of human consciousness, how variation in this magnitude property is registered by the human brain is unknown. A striking feature of neural codes for magnitude in other psychological domains, such as number or reward, is that the magnitude property is represented independently of its sensory features. To test whether perceptual vividness also covaries with neural codes that are invariant to sensory content, we reanalyzed existing magnetoencephalography and functional MRI data from two distinct studies which quantified perceptual vividness via subjective ratings of awareness and visibility. Using representational similarity and decoding analyses, we find evidence for content-invariant neural signatures of perceptual vividness distributed across visual, parietal, and frontal cortices. Our findings indicate that the neural correlates of subjective vividness may share similar properties to magnitude codes in other cognitive domains.

3.
Eur J Neurosci ; 56(10): 5810-5822, 2022 11.
Article in English | MEDLINE | ID: mdl-36086829

ABSTRACT

In the search for the neural correlates of consciousness, it is often assumed that there is a stable set within the relevant sensory modality. Within the visual modality, the debate has centred upon whether frontal or occipital activations are the best predictors of perceptual awareness. Although not accepted by all as definitive evidence, no-report and decoding studies have indicated that occipital activity is the most consistently correlated with perceptual awareness whereas frontal activity might be closely related to aspects of cognition typically related to reports. However, perception is rarely just passive perception of something, but more or less always perception for something. That is, the task at hand for the perceiver may influence what is being perceived. This suggests an alternative view: that consciousness is not one specific 'function' that can be localized consistently to one area or event-related component and that the specific attributes of the neural correlates of consciousness depend on the task at hand. To investigate whether and how tasks may influence the neural correlates of consciousness, we here contrasted two tasks, a perceptual task and a conceptual task, using identical stimuli in both tasks. Using magnetoencephalography, we found that the perceptual task recruited more occipital resources than the conceptual task. Furthermore, we found that between the two conditions, the amount of frontal resources recruited differed between different gradations of perceptual awareness partly in an unexpected manner. These findings support a view of task affecting the neural correlates of consciousness.


Subject(s)
Consciousness , Visual Perception , Magnetoencephalography , Awareness
5.
Neuroimage ; 238: 118202, 2021 09.
Article in English | MEDLINE | ID: mdl-34089874

ABSTRACT

The cerebellum is involved in predicting the sensory feedback resulting from movements and sensations, but little is known about the precise timing of these predictions due to the scarcity of time-sensitive cerebellar neuroimaging studies. We here, using magnetoencephalography, investigated the hypothesis that one function of the cerebellum is to predict with millisecond precision when rhythmic stimuli are expected to impinge on sensory receptors. This revealed that omissions following regular trains of stimulation showed higher cerebellar power in the beta band (14-30 Hz) than those following irregular trains of stimulation, within milliseconds of when the omitted stimulus should have appeared. We also found evidence of cerebellar theta band (4-7 Hz) activity encoding the rhythm of new sequences of stimulation. Our results also strongly suggest that the putamen and the thalamus mirror the cerebellum in showing higher beta band power when omissions followed regular trains of stimulation compared to when they followed irregular trains of stimulation. We interpret this as the cerebellum functioning as a clock that precisely encodes and predicts upcoming stimulation, perhaps in tandem with the putamen and thalamus. Relative to less predictable stimuli, perfectly predictable stimuli induce greater cerebellar power. This implies that the cerebellum entrains to rhythmic stimuli for the purpose of detecting any deviations from that rhythm.


Subject(s)
Attention/physiology , Cerebellum/physiology , Touch Perception/physiology , Touch/physiology , Adolescent , Adult , Feedback, Sensory/physiology , Female , Humans , Magnetoencephalography , Male , Physical Stimulation , Young Adult
6.
Front Neurosci ; 14: 573254, 2020.
Article in English | MEDLINE | ID: mdl-33100961

ABSTRACT

Under adverse listening conditions, prior linguistic knowledge about the form (i.e., phonology) and meaning (i.e., semantics) help us to predict what an interlocutor is about to say. Previous research has shown that accurate predictions of incoming speech increase speech intelligibility, and that semantic predictions enhance the perceptual clarity of degraded speech even when exact phonological predictions are possible. In addition, working memory (WM) is thought to have specific influence over anticipatory mechanisms by actively maintaining and updating the relevance of predicted vs. unpredicted speech inputs. However, the relative impact on speech processing of deviations from expectations related to form and meaning is incompletely understood. Here, we use MEG to investigate the cortical temporal processing of deviations from the expected form and meaning of final words during sentence processing. Our overall aim was to observe how deviations from the expected form and meaning modulate cortical speech processing under adverse listening conditions and investigate the degree to which this is associated with WM capacity. Results indicated that different types of deviations are processed differently in the auditory N400 and Mismatch Negativity (MMN) components. In particular, MMN was sensitive to the type of deviation (form or meaning) whereas the N400 was sensitive to the magnitude of the deviation rather than its type. WM capacity was associated with the ability to process phonological incoming information and semantic integration.

7.
Neuroimage ; 221: 117157, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32659354

ABSTRACT

Magnetoencephalography (MEG) has a unique capacity to resolve the spatio-temporal development of brain activity from non-invasive measurements. Conventional MEG, however, relies on sensors that sample from a distance (20-40 â€‹mm) to the head due to thermal insulation requirements (the MEG sensors function at 4 â€‹K in a helmet). A gain in signal strength and spatial resolution may be achieved if sensors are moved closer to the head. Here, we report a study comparing measurements from a seven-channel on-scalp SQUID MEG system to those from a conventional (in-helmet) SQUID MEG system. We compared the spatio-temporal resolution between on-scalp and conventional MEG by comparing the discrimination accuracy for neural activity patterns resulting from stimulating five different phalanges of the right hand. Because of proximity and sensor density differences between on-scalp and conventional MEG, we hypothesized that on-scalp MEG would allow for a more high-resolved assessment of these activity patterns, and therefore also a better classification performance in discriminating between neural activations from the different phalanges. We observed that on-scalp MEG provided better classification performance during an early post-stimulus period (10-20 â€‹ms). This corresponded to the electroencephalographic (EEG) component P16/N16 and was an unexpected observation as this component is usually not observed in conventional MEG. This finding shows that on-scalp MEG enables a richer registration of the cortical signal, indicating a sensitivity to what are potentially sources in the thalamo-cortical radiation. We had originally expected that on-scalp MEG would provide better classification accuracy based on activity in proximity to the P60m component compared to conventional MEG. This component indeed allowed for the best classification performance for both MEG systems (60-75%, chance 50%). However, we did not find that on-scalp MEG allowed for better classification than conventional MEG at this latency. We suggest that this absence of differences is due to the limited sensor coverage in the recording, in combination with our strategy for positioning the on-scalp MEG sensors. We show how the current sensor coverage may have limited our chances to register the necessary between-phalange source field dissimilarities for fair hypothesis testing, an approach we otherwise believe to be useful for future benchmarking measurements.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography/methods , Evoked Potentials, Somatosensory/physiology , Fingers/physiology , Magnetoencephalography/methods , Magnetoencephalography/standards , Touch Perception/physiology , Adult , Humans , Male , Middle Aged , Sensitivity and Specificity
8.
Clin Neurophysiol ; 131(8): 1711-1720, 2020 08.
Article in English | MEDLINE | ID: mdl-32504930

ABSTRACT

OBJECTIVE: Conventional MEG provides an unsurpassed ability to, non-invasively, detect epileptic activity. However, highly resolved information on small neuronal populations required in epilepsy diagnostics is lost and can be detected only intracranially. Next-generation on-scalp magnetencephalography (MEG) sensors aim to retrieve information unavailable to conventional non-invasive brain imaging techniques. To evaluate the benefits of on-scalp MEG in epilepsy, we performed the first-ever such measurement on an epilepsy patient. METHODS: Conducted as a benchmarking study focusing on interictal epileptiform discharge (IED) detectability, an on-scalp high-temperature superconducting quantum interference device magnetometer (high-Tc SQUID) system was compared to a conventional, low-temperature SQUID system. Co-registration of electroencephalopraphy (EEG) was performed. A novel machine learning-based IED-detection algorithm was developed to aid identification of on-scalp MEG unique IEDs. RESULTS: Conventional MEG contained 24 IEDs. On-scalp MEG revealed 47 IEDs (16 co-registered by EEG, 31 unique to the on-scalp MEG recording). CONCLUSION: Our results indicate that on-scalp MEG might capture IEDs not seen by other non-invasive modalities. SIGNIFICANCE: On-scalp MEG has the potential of improving non-invasive epilepsy evaluation.


Subject(s)
Brain Waves/physiology , Brain/physiopathology , Epilepsy/physiopathology , Magnetoencephalography/methods , Seizures/physiopathology , Electroencephalography/instrumentation , Electroencephalography/methods , Female , Humans , Magnetoencephalography/instrumentation , Middle Aged , Scalp/physiopathology
9.
Neuroimage ; 217: 116930, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32422403

ABSTRACT

Selective auditory attention allows us to focus on relevant sounds within noisy or complex auditory environments, and is essential for the processing of speech and music. The auditory steady-state response (ASSR) has been proposed as a neural measure for tracking selective auditory attention, even within continuous and complex soundscapes. However, the current literature is inconsistent on how the ASSR is influenced by selective attention, with findings based primarily on attention being directed to either ear rather than to sound content. In this experiment, a mixture of melody streams was presented to both ears identically (diotically) as we examined if selective auditory attention to sound content influences the ASSR. Using magnetoencephalography (MEG), we assessed the stream-specific ASSRs from three frequency-tagged melody streams when attention was directed between each melody stream, based on their respective pitch and timing. Our main results showed that selective attention enhances the ASSR power of an attended melody stream by 14% at a general sensor level. This ability to readily capture attentional changes in a stimuli-precise manner makes the ASSR a useful tool for studying selective auditory attention, especially in complex auditory environments. As a secondary aim, we explored the distribution of cortical ASSR sources and their respective attentional modulation using a distributed source model of the ASSR activity. Notably, we uncovered the existence of ASSR attentional modulation outside the temporal cortices. Across-subject averages of the attentional enhancement over the cortical surface suggest that frontal regions show up to ~80% enhancement, while temporal and parietal cortices were enhanced by 20-25%. Importantly, this work advocates a novel 'beyond the temporal cortex' perspective on ASSR modulation and also serves as a template for future studies to precisely pin-point which cortical sites are more susceptible to ASSR attentional modulation.


Subject(s)
Attention/physiology , Auditory Cortex/physiology , Auditory Perception/physiology , Acoustic Stimulation , Adolescent , Adult , Brain Mapping , Evoked Potentials, Auditory/physiology , Female , Frontal Lobe/physiology , Humans , Magnetoencephalography , Male , Middle Aged , Music , Parietal Lobe/physiology , Temporal Lobe/physiology , Young Adult
10.
Neuroimage ; 215: 116817, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32278092

ABSTRACT

The cerebellum plays a key role in the regulation of motor learning, coordination and timing, and has been implicated in sensory and cognitive processes as well. However, our current knowledge of its electrophysiological mechanisms comes primarily from direct recordings in animals, as investigations into cerebellar function in humans have instead predominantly relied on lesion, haemodynamic and metabolic imaging studies. While the latter provide fundamental insights into the contribution of the cerebellum to various cerebellar-cortical pathways mediating behaviour, they remain limited in terms of temporal and spectral resolution. In principle, this shortcoming could be overcome by monitoring the cerebellum's electrophysiological signals. Non-invasive assessment of cerebellar electrophysiology in humans, however, is hampered by the limited spatial resolution of electroencephalography (EEG) and magnetoencephalography (MEG) in subcortical structures, i.e., deep sources. Furthermore, it has been argued that the anatomical configuration of the cerebellum leads to signal cancellation in MEG and EEG. Yet, claims that MEG and EEG are unable to detect cerebellar activity have been challenged by an increasing number of studies over the last decade. Here we address this controversy and survey reports in which electrophysiological signals were successfully recorded from the human cerebellum. We argue that the detection of cerebellum activity non-invasively with MEG and EEG is indeed possible and can be enhanced with appropriate methods, in particular using connectivity analysis in source space. We provide illustrative examples of cerebellar activity detected with MEG and EEG. Furthermore, we propose practical guidelines to optimize the detection of cerebellar activity with MEG and EEG. Finally, we discuss MEG and EEG signal contamination that may lead to localizing spurious sources in the cerebellum and suggest ways of handling such artefacts. This review is to be read as a perspective review that highlights that it is indeed possible to measure cerebellum with MEG and EEG and encourages MEG and EEG researchers to do so. Its added value beyond highlighting and encouraging is that it offers useful advice for researchers aspiring to investigate the cerebellum with MEG and EEG.


Subject(s)
Auditory Perception/physiology , Cerebellum/physiology , Electroencephalography/methods , Magnetoencephalography/methods , Psychomotor Performance/physiology , Visual Perception/physiology , Electroencephalography/standards , Humans , Magnetoencephalography/standards , Patient Positioning/methods
11.
Neuroimage ; 212: 116686, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32119981

ABSTRACT

Source modelling in magnetoencephalography (MEG) requires precise co-registration of the sensor array and the anatomical structure of the measured individual's head. In conventional MEG, the positions and orientations of the sensors relative to each other are fixed and known beforehand, requiring only localization of the head relative to the sensor array. Since the sensors in on-scalp MEG are positioned on the scalp, locations of the individual sensors depend on the subject's head shape and size. The positions and orientations of on-scalp sensors must therefore be measured at every recording. This can be achieved by inverting conventional head localization, localizing the sensors relative to the head - rather than the other way around. In this study we present a practical method for localizing sensors using magnetic dipole-like coils attached to the subject's head. We implement and evaluate the method in a set of on-scalp MEG recordings using a 7-channel on-scalp MEG system based on high critical temperature superconducting quantum interference devices (high-Tc SQUIDs). The method allows individually localizing the sensor positions, orientations, and responsivities with high accuracy using only a short averaging time (≤ 2 â€‹mm, < 3° and < 3%, respectively, with 1-s averaging), enabling continuous sensor localization. Calibrating and jointly localizing the sensor array can further improve the accuracy of position and orientation (< 1 â€‹mm and < 1°, respectively, with 1-s coil recordings). We demonstrate source localization of on-scalp recorded somatosensory evoked activity based on co-registration with our method. Equivalent current dipole fits of the evoked responses corresponded well (within 4.2 â€‹mm) with those based on a commercial, whole-head MEG system.


Subject(s)
Brain Mapping/instrumentation , Brain Mapping/methods , Magnetoencephalography/instrumentation , Magnetoencephalography/methods , Scalp , Adult , Brain/physiology , Female , Humans , Male , Middle Aged
13.
Neuroimage ; 184: 78-89, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30213774

ABSTRACT

The brain builds up expectations to future events based on the patterns of past events. This function has been studied extensively in the auditory and visual domains using various oddball paradigms, but only little exploration of this phenomenon has been done in the somatosensory domain. In this study, we explore how expectations of somatosensory stimulations are established and expressed in neural activity as measured with magnetoencephalography. Using tactile stimulations to the index finger, we compared conditions with actual stimulation to conditions with omitted stimulations, both of which were either expected or unexpected. Our results show that when a stimulation is expected but omitted, a time-locked response occurs ∼135 ms subsequent to the expected stimulation. This somatosensory response to "nothing" was source localized to the secondary somatosensory cortex and to the insula. This provides novel evidence of the capability of the brain of millisecond time-keeping of somatosensory patterns across intervals of 3000 ms. Our results also show that when stimuli are repeated and expectations are established, there is associated activity in the theta and beta bands. These theta and beta band expressions of expectation were localized to the primary somatosensory area, inferior parietal cortex and cerebellum. Furthermore, there was gamma band activity in the right insula for the first stimulation after an omission, which indicates the detection of a new stimulation event after an expected pattern has been broken. Finally, our results show that cerebellum play a crucial role in predicting upcoming stimulation and in predicting when stimulation may begin again.


Subject(s)
Brain/physiology , Motivation/physiology , Touch Perception/physiology , Adult , Anticipation, Psychological , Cerebellum/physiology , Female , Humans , Magnetoencephalography , Male , Middle Aged , Parietal Lobe/physiology , Physical Stimulation , Somatosensory Cortex/physiology , Touch , Young Adult
14.
Front Neurosci ; 12: 261, 2018.
Article in English | MEDLINE | ID: mdl-29765297

ABSTRACT

An important aim of an analysis pipeline for magnetoencephalographic (MEG) data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer his or her questions. The example question being answered here is whether the so-called beta rebound differs between novel and repeated stimulations. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The data analyzed are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. The processing steps covered for the first analysis are MaxFiltering the raw data, defining, preprocessing and epoching the data, cleaning the data, finding and removing independent components related to eye blinks, eye movements and heart beats, calculating participants' individual evoked responses by averaging over epoched data and subsequently removing the average response from single epochs, calculating a time-frequency representation and baselining it with non-stimulation trials and finally calculating a grand average, an across-group sensor space representation. The second analysis starts from the grand average sensor space representation and after identification of the beta rebound the neural origin is imaged using beamformer source reconstruction. This analysis covers reading in co-registered magnetic resonance images, segmenting the data, creating a volume conductor, creating a forward model, cutting out MEG data of interest in the time and frequency domains, getting Fourier transforms and estimating source activity with a beamformer model where power is expressed relative to MEG data measured during periods of non-stimulation. Finally, morphing the source estimates onto a common template and performing group-level statistics on the data are covered. Functions for saving relevant figures in an automated and structured manner are also included. The protocol presented here can be applied to any research protocol where the emphasis is on source reconstruction of induced responses where the underlying sources are not coherent.

15.
PLoS One ; 13(5): e0191111, 2018.
Article in English | MEDLINE | ID: mdl-29746486

ABSTRACT

Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.


Subject(s)
Biosensing Techniques/instrumentation , Brain Mapping/methods , Brain/physiology , Magnetoencephalography/instrumentation , Models, Theoretical , Scalp/physiology , Biosensing Techniques/methods , Humans , Magnetoencephalography/methods , Signal Processing, Computer-Assisted , Software
16.
Front Neurosci ; 12: 6, 2018.
Article in English | MEDLINE | ID: mdl-29403349

ABSTRACT

An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns of activity that are statistically different from baseline. To estimate source activity, processing of the anatomy of subjects based on magnetic resonance imaging is necessary. The necessary steps are covered here: importing magnetic resonance images, segmenting the brain, estimating boundaries between different tissue layers, making fine-resolution scalp surfaces for facilitating co-registration, creating source spaces and creating volume conductors for each subject.

17.
PLoS One ; 12(7): e0178602, 2017.
Article in English | MEDLINE | ID: mdl-28742118

ABSTRACT

The development of new magnetic sensor technologies that promise sensitivities approaching that of conventional MEG technology while operating at far lower operating temperatures has catalysed the growing field of on-scalp MEG. The feasibility of on-scalp MEG has been demonstrated via benchmarking of new sensor technologies performing neuromagnetic recordings in close proximity to the head surface against state-of-the-art in-helmet MEG sensor technology. However, earlier work has provided little information about how these two approaches compare, or about the reliability of observed differences. Herein, we present such a comparison, based on recordings of the N20m component of the somatosensory evoked field as elicited by electric median nerve stimulation. As expected from the proximity differences between the on-scalp and in-helmet sensors, the magnitude of the N20m activation as recorded with the on-scalp sensor was higher than that of the in-helmet sensors. The dipole pattern of the on-scalp recordings was also more spatially confined than that of the conventional recordings. Our results furthermore revealed unexpected temporal differences in the peak of the N20m component. An analysis protocol was therefore developed for assessing the reliability of this observed difference. We used this protocol to examine our findings in terms of differences in sensor sensitivity between the two types of MEG recordings. The measurements and subsequent analysis raised attention to the fact that great care has to be taken in measuring the field close to the zero-line crossing of the dipolar field, since it is heavily dependent on the orientation of sensors. Taken together, our findings provide reliable evidence that on-scalp and in-helmet sensors measure neural sources in mostly similar ways.


Subject(s)
Magnetoencephalography/methods , Brain/physiology , Electric Stimulation , Evoked Potentials, Somatosensory/physiology , Habituation, Psychophysiologic , Head Protective Devices , Humans , Magnetoencephalography/instrumentation , Magnetoencephalography/statistics & numerical data , Median Nerve/physiology , Models, Neurological , Reproducibility of Results , Scalp
18.
Front Psychol ; 8: 2117, 2017.
Article in English | MEDLINE | ID: mdl-29375411

ABSTRACT

Semantic satiation is characterised by the subjective and temporary loss of meaning after high repetition of a prime word. To study the nature of this effect, previous electroencephalography (EEG) research recorded the N400, an ERP component that is sensitive to violations of semantic context. The N400 is characterised by a relative negativity to words that are unrelated vs. related to the semantic context. The semantic satiation hypothesis predicts that the N400 should decrease with high repetition. However, previous findings have been inconsistent. Because of these inconsistent findings and the shortcomings of previous research, we used a modified design that minimises confounding effects from non-semantic processes. We recorded 64-channel EEG and analysed the N400 in a semantic priming task in which the primes were repeated 3 or 30 times. Critically, we separated low and high repetition trials and excluded response trials. Further, we varied the physical features (letter case and format) of consecutive primes to minimise confounding effects from perceptual habituation. For centrofrontal electrodes, the N400 was reduced after 30 repetitions (vs. 3 repetitions). Explorative source reconstructions suggested that activity decreased after 30 repetitions in bilateral inferior temporal gyrus, the right posterior section of the superior and middle temporal gyrus, right supramarginal gyrus, bilateral lateral occipital cortex, and bilateral lateral orbitofrontal cortex. These areas overlap broadly with those typically involved in the N400, namely middle temporal gyrus and inferior frontal gyrus. The results support the semantic rather than the perceptual nature of the satiation effect.

19.
Cereb Cortex ; 26(6): 2677-88, 2016 06.
Article in English | MEDLINE | ID: mdl-26009612

ABSTRACT

Two electrophysiological components have been extensively investigated as candidate neural correlates of perceptual consciousness: An early, occipitally realized component occurring 130-320 ms after stimulus onset and a late, frontally realized component occurring 320-510 ms after stimulus onset. Recent studies have suggested that the late component may not be uniquely related to perceptual consciousness, but also to sensory expectations, task associations, and selective attention. We conducted a magnetoencephalographic study; using multivariate analysis, we compared classification accuracies when decoding perceptual consciousness from the 2 components using sources from occipital and frontal lobes. We found that occipital sources during the early time range were significantly more accurate in decoding perceptual consciousness than frontal sources during both the early and late time ranges. These results are the first of its kind where the predictive values of the 2 components are quantitatively compared, and they provide further evidence for the primary importance of occipital sources in realizing perceptual consciousness. The results have important consequences for current theories of perceptual consciousness, especially theories emphasizing the role of frontal sources.


Subject(s)
Brain/physiology , Consciousness/physiology , Magnetoencephalography , Visual Perception/physiology , Adult , Humans , Magnetoencephalography/methods , Male , Multivariate Analysis , Photic Stimulation , Signal Processing, Computer-Assisted , Time Factors , Young Adult
20.
Hum Brain Mapp ; 36(5): 1866-77, 2015 May.
Article in English | MEDLINE | ID: mdl-25627861

ABSTRACT

When experiences become meaningful to the self, they are linked to synchronous activity in a paralimbic network of self-awareness and dopaminergic activity. This network includes medial prefrontal and medial parietal/posterior cingulate cortices, where transcranial magnetic stimulation may transiently impair self-awareness. Conversely, we hypothesize that dopaminergic stimulation may improve self-awareness and metacognition (i.e., the ability of the brain to consciously monitor its own cognitive processes). Here, we demonstrate improved noetic (conscious) metacognition by oral administration of 100 mg dopamine in minimal self-awareness. In a separate experiment with extended self-awareness dopamine improved the retrieval accuracy of memories of self-judgment (autonoetic, i.e., explicitly self-conscious) metacognition. Concomitantly, magnetoencephalography (MEG) showed increased amplitudes of oscillations (power) preferentially in the medial prefrontal cortex. Given that electromagnetic activity in this region is instrumental in self-awareness, this explains the specific effect of dopamine on explicit self-awareness and autonoetic metacognition.


Subject(s)
Awareness/drug effects , Carbidopa/pharmacology , Consciousness/drug effects , Dopamine Agonists/pharmacology , Levodopa/pharmacology , Metacognition/drug effects , Prefrontal Cortex/drug effects , Adult , Awareness/physiology , Brain Waves/drug effects , Brain Waves/physiology , Consciousness/physiology , Dopamine/metabolism , Double-Blind Method , Drug Combinations , Humans , Judgment/drug effects , Judgment/physiology , Magnetoencephalography , Male , Metacognition/physiology , Neuropsychological Tests , Prefrontal Cortex/physiology , Self Concept , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...