Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Pathol ; 255(2): 155-165, 2021 10.
Article in English | MEDLINE | ID: mdl-34255349

ABSTRACT

Improved risk stratification is needed for patients with localized prostate cancer. This study characterized and assessed the prognostic potential of distinct immune cell infiltration patterns in the prostate tumor microenvironment. Using tissue microarrays, multiplex immunohistochemistry/immunofluorescence, and automated digital pathology, we analyzed radical prostatectomy specimens from two large patient cohorts (training: n = 470; validation: n = 333) to determine infiltration levels of seven immune cell types in malignant versus benign prostate tissue: CD3+ CD8- FoxP3- T helper cells, CD3+ CD8+ FoxP3- cytotoxic T cells (CTLs), CD3+ CD8- FoxP3+ regulatory T cells (Tregs ), CD20+ B cells, CD68+ CD163- M1 macrophages, CD68+ CD163+ M2 macrophages, and tryptase+ mast cells. Results were further validated by cell type enrichment analyses of bulk tumor RNAseq data from a third independent patient cohort (n = 99). Prognostic potential was assessed by Kaplan-Meier and uni-/multi-variate Cox regression analyses. Clinical endpoint was biochemical recurrence. All seven immune cell types were enriched in prostate cancer versus benign stroma, while there was selective enrichment for B cells, Tregs , M1 and M2 macrophages, and depletion of mast cells and CTLs in prostate cancer epithelium. In all three cohorts, high levels of infiltrating Tregs , M1, and M2 macrophages in stroma and/or epithelium were associated with biochemical recurrence (p < 0.05; log-rank test). After adjustment for routine clinical variables, Tregs and M2 macrophages remained significant adverse predictors of biochemical recurrence (p < 0.05; multivariate Cox regression). Our comprehensive analyses of immune cell infiltration patterns in the prostate tumor microenvironment highlight infiltrating Tregs , M1, and M2 macrophages as adverse predictors of prostate cancer outcome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Prostatic Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Adult , Aged , Humans , Male , Middle Aged , Prognosis , Prostatic Neoplasms/pathology
2.
Mycoses ; 56(3): 229-35, 2013 May.
Article in English | MEDLINE | ID: mdl-22924975

ABSTRACT

Accurate and fast yeast identification is important when treating patients with invasive fungal disease as susceptibility to antifungal agents is highly species related. Matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF-MS) provides a powerful tool with a clear potential to improve current diagnostic practice. Two MALDI-TOF-MS-systems (BioTyper/Bruker and Saramis/AXIMA) were evaluated using: (i) A collection of 102 archived, well characterised yeast isolates representing 14 different species and (ii) Prospectively collected isolates obtained from clinical samples at two participating laboratories. Of the 102 archived isolates, 81 (79%) and 92 (90%) were correctly identified by Saramis/AXIMA and BioTyper/Bruker respectively. Saramis/AXIMA was unable to separate Candida albicans, C. africana and C. dubliniensis in 13 of 32 isolates. After manual interpretation of the mass spectra output, all 13 isolates were correctly identified, resulting in an overall identification performance of 92%. No misidentifications occurred with the two systems. Of the routine isolates one laboratory identified 99/99 (100%) and 90/99 (91%) to species level by Saramis/Axima and conventional identification, respectively, whereas the other laboratory identified 83/98 (85%) to species level by both BioTyper/Bruker and conventional identification. Both MALDI-TOF-MS systems are fast, have built-in databases that cover the majority of clinically relevant Candida species, and have an accuracy that outperforms our conventional identification systems.


Subject(s)
Candida albicans/isolation & purification , Candidiasis/blood , DNA, Fungal/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Candida albicans/genetics , Humans , Microbiological Techniques/methods , Prospective Studies , Reproducibility of Results , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...