Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neurobiol Aging ; 98: 214-224, 2021 02.
Article in English | MEDLINE | ID: mdl-33341652

ABSTRACT

Postoperative cognitive dysfunction (POCD) is the collection of cognitive impairments, lasting days to months, experienced by individuals following surgery. Persistent POCD is most commonly experienced by older individuals and is associated with a greater vulnerability to developing Alzheimer's disease, but the underlying mechanisms are not known. It is known that laparotomy (exploratory abdominal surgery) in aged rats produces memory impairments for 4 days. Here we report that postsurgical treatment with morphine extends this deficit to at least 2 months while having no effects in the absence of surgery. Indeed, hippocampal-dependent long-term memory was impaired 2, 4, and 8 weeks postsurgery only in aged, morphine-treated rats. Short-term memory remained intact. Morphine is known to have analgesic effects via µ-opioid receptor activation and neuroinflammatory effects through Toll-like receptor 4 activation. Here we demonstrate that persistent memory deficits were mediated independently of the µ-opioid receptor, suggesting that they were evoked through a neuroinflammatory mechanism and unrelated to pain modulation. In support of this, aged, laparotomized, and morphine-treated rats exhibited increased gene expression of various proinflammatory markers (IL-1ß, IL-6, TNFα, NLRP3, HMGB1, TLR2, and TLR4) in the hippocampus at the 2-week time point. Furthermore, central blockade of IL-1ß signaling with the specific IL-1 receptor antagonist (IL-1RA), at the time of surgery, completely prevented the memory impairment. Finally, synaptophysin and PSD95 gene expression were significantly dysregulated in the hippocampus of aged, laparotomized, morphine-treated rats, suggesting that impaired synaptic structure and/or function may play a key role in this persistent deficit. This instance of long-term memory impairment following surgery closely mirrors the timeline of persistent POCD in humans and may be useful for future treatment discoveries.


Subject(s)
Aging , Morphine/adverse effects , Postoperative Cognitive Complications/chemically induced , Alzheimer Disease/etiology , Animals , Cytokines/genetics , Cytokines/metabolism , Gene Expression , Hippocampus/metabolism , Inflammation Mediators/metabolism , Laparotomy , Memory Disorders/chemically induced , Memory Disorders/genetics , Memory Disorders/psychology , Memory, Long-Term , Memory, Short-Term , Morphine/metabolism , Postoperative Cognitive Complications/genetics , Postoperative Cognitive Complications/psychology , Rats , Receptors, Opioid, mu/metabolism , Toll-Like Receptor 4/metabolism
2.
Front Endocrinol (Lausanne) ; 11: 588459, 2020.
Article in English | MEDLINE | ID: mdl-33679600

ABSTRACT

In humans and mice, inactivating mutations in fibroblast growth factor receptor 1 (Fgfr1) lead to gonadotropin-releasing hormone (GnRH) deficiency and a host of downstream reproductive disorders. It was unclear if Fgfr1 signaling directly upon GnRH neurons critically drove the establishment of a functional GnRH system. To answer this question, we generated a mouse model with a conditional deletion of Fgfr1 in GnRH neurons using the Cre/loxP approach. These mice, called Fgfr1cKO mice, were examined along with control mice for their pubertal onset and a host of reproductive axis functions. Our results showed that Fgfr1cKO mice harbored no detectable defects in the GnRH system and pubertal onset, suffered only subtle changes in the pituitary function, but exhibited significantly disrupted testicular and ovarian morphology at 25 days of age, indicating impaired gametogenesis at a young age. However, these disruptions were transient and became undetectable in older mice. Our results suggest that Fgfr1 signaling directly on GnRH neurons supports, to some extent, the reproductive axis function in the period leading to the early phase of puberty, but is not critically required for pubertal onset or reproductive maintenance in sexually mature animals.


Subject(s)
Gametogenesis , Gonadotropin-Releasing Hormone/metabolism , Neurons/metabolism , Receptor, Fibroblast Growth Factor, Type 1/physiology , Reproduction , Sexual Maturation , Animals , Female , Integrases , Male , Mice , Mice, Knockout , Mutation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL