Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Nat Commun ; 15(1): 3049, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589380

ABSTRACT

Raman spectroscopy provides non-destructive, label-free quantitative studies of chemical compositions at the microscale as used on NASA's Perseverance rover on Mars. Such capabilities come at the cost of high requirements for instrumentation. Here we present a centimeter-scale miniaturization of a Raman spectrometer using cheap non-stabilized laser diodes, densely packed optics, and non-cooled small sensors. The performance is comparable with expensive bulky research-grade Raman systems. It has excellent sensitivity, low power consumption, perfect wavenumber, intensity calibration, and 7 cm-1 resolution within the 400-4000 cm-1 range using a built-in reference. High performance and versatility are demonstrated in use cases including quantification of methanol in beverages, in-vivo Raman measurements of human skin, fermentation monitoring, chemical Raman mapping at sub-micrometer resolution, quantitative SERS mapping of the anti-cancer drug methotrexate and in-vitro bacteria identification. We foresee that the miniaturization will allow realization of super-compact Raman spectrometers for integration in smartphones and medical devices, democratizing Raman technology.

2.
Front Cardiovasc Med ; 11: 1341154, 2024.
Article in English | MEDLINE | ID: mdl-38468720

ABSTRACT

Background: Arteriovenous (AV) grafts often develop severe complications of stenosis due to neointimal proliferation that occurs either at the venous anastomosis site or at the outflow receiving vein. This study compares primary patency during 12 months of follow up for a new experimental Biomodics© interpenetrating polymer network (IPN) drug-eluting graft prototype with state-of-the-art GORE® ACUSEAL (ACUSEAL) in an AV graft model in sheep. Methods and results: An end-to-end bypass from the common carotid artery to the jugularis vein was performed bilaterally in 12 sheep. The usage of ACUSEAL or the IPN, both 6.0 mm in diameter, was determined via randomization. The sheep were followed up every 4 weeks with ultrasonic duplex scanning to determine patency; the experienced observer was blinded to the randomization. One sheep died after 11 days, and the final sample accordingly consisted of 11 animals. When comparing neointimal hyperplasia after 12 months in the two grafts, Fisher's exact test showed a significant difference with none out of 11 in the IPN grafts and 9 out of 11 in the ACUSEAL graft (p < 0.001). However, the Biomodics© IPN exhibited severe deterioration over time. Conclusions: Almost all of the grafts occluded during the 12 months of follow up. Although the zwitterion-bounded interpenetrating drug eluting polymer network showed signs to impair neointimal hyperplasia and thrombosis, age-related degeneration hindered demonstrating a potential improvement in patency.

3.
BJUI Compass ; 5(2): 217-223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38371199

ABSTRACT

Objective: The objective of this study is to characterize bladder mucosal trauma associated with intermittent catheterization with conventional eyelet catheters (CECs) and to assess if a microhole zone catheter (MHZC) design concept reduces this adverse effect. Materials and Methods: A porcine model was developed to reflect human catheterization and bladder drainage. Nine pigs were randomized for catheterization with CEC (n = 6) or MHZC (n = 3). The bladder was drained repeatedly 20 times through the catheter. Cystoscopy was performed before and after the procedure, and bladders were analysed by histopathology. Two additional pigs were used for cystoscopy visualization of suction events in vivo. Cystoscopy, gross pathology, histopathological score, leucocyte infiltration, and intracatheter pressure at flow stops during voiding were compared for each group. Results: A significant higher pressure gradient was measured inside the CECs compared with MHZCs during flow stop. Consequently, CECs resulted in suction events inflicting bladder trauma characterized by loss of epithelium, oedema, haemorrhage, and neutrophil tissue infiltration. No significant trauma was identified when using MHZC. Conclusions: Considerable mucosal bladder trauma is inflicted by CECs which may be an overlooked risk factor for urinary tract infection. Catheters can be designed to minimize mucosal suction and reduce associated trauma. This may be a solution to reduce infection frequency and increase user comfort. Furthermore, the study demonstrates the potential of pigs as an attractive animal model for investigating urinary catheter performances.

4.
Lab Anim ; 58(3): 252-260, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38334709

ABSTRACT

Catheterisation of the urinary bladder is needed in many types of human disease models in pigs. Based on our extensive experience with the pig as an infection model, we here demonstrate an approach of catheterising domestic pigs (40 attempts) and Göttingen minipigs (10 attempts) using a blinded method, that is, without speculums or videoscopes to visualise the urethral opening. The procedure was tested on control animals and pigs with experimental Escherichia coli urinary tract infection (UTI) to assess the potential influence of this condition on procedural outcome. Lastly, we performed cystoscopy in three animals to visualise the route to the urethra and to localise potential anatomical obstacles. All domestic pigs were catheterised successfully in an average of 2 minutes and 23 seconds, and this was not influenced by UTI (p = 0.06) or bladder urine content at the time of catheterisation (p = 0.32). All Göttingen minipigs were successfully catheterised in an average of 4 minutes and 27 seconds. We conclude that blinded catheterisation is a fast and reliable approach that can be performed in pigs with or without UTI with minimal risk of trauma or contamination.


Subject(s)
Escherichia coli Infections , Swine Diseases , Swine, Miniature , Urinary Bladder , Urinary Catheterization , Urinary Tract Infections , Animals , Female , Urinary Tract Infections/veterinary , Urinary Tract Infections/microbiology , Urinary Catheterization/adverse effects , Urinary Catheterization/veterinary , Urinary Catheterization/methods , Swine , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Urinary Bladder/microbiology , Swine Diseases/microbiology , Escherichia coli , Sus scrofa
5.
Sci Rep ; 14(1): 2268, 2024 01 27.
Article in English | MEDLINE | ID: mdl-38280939

ABSTRACT

Urinary tract infections (UTIs) are the main complication associated with clean intermittent catheterization (CIC) and are facilitated by post-void residual urine and trauma to the mucosa during voiding. The risk of UTI may be diminished by reducing the residual volumes and preventing microtrauma caused by mucosal suction through the eyelets of conventional eyelet catheters (CEC). A new micro-hole zone catheter (MHZC) was developed and tested in an ex vivo porcine lower urinary tract model and in vivo, in pigs, against a CEC. It was shown that, irrespective of the micro-hole diameter, the new catheter ensured increased flowrates and significantly lower residual volumes at the first flow-stop. Furthermore, with a micro-hole diameter of 0.4 mm, mucosal suction was virtually eliminated, regardless of the insertion depth or simulated intra-abdominal pressure mimicking sitting or standing humans. Pressure profile experiments and endoscopy studies indicated that the bladder gradually folds against the drainage tip of the new catheter, without blocking the flow, and, unlike with the CEC, sharp pressure variations and flow-stops did not occur during voiding. The MHZC outperformed the CEC in all tested scenarios and decreased residual volumes, thus potentially decreasing the risk of UTIs.


Subject(s)
Intermittent Urethral Catheterization , Urinary Retention , Urinary Tract Infections , Humans , Animals , Swine , Urinary Bladder , Urinary Tract Infections/prevention & control , Urinary Tract Infections/etiology , Intermittent Urethral Catheterization/adverse effects , Catheters/adverse effects
6.
Front Immunol ; 14: 1258136, 2023.
Article in English | MEDLINE | ID: mdl-37954588

ABSTRACT

Introduction: Unlike glycosylation of proteins expressed in mammalian systems, bacterial glycosylation is often neglected in the development of recombinant vaccines. Methods: Here, we compared the effects of glycosylation of YghJ, an Escherichia coli protein important for mucus attachment of bacteria causing in urinary tract infections (UTIs). A novel method based on statistical evaluation of phage display for the identification and comparison of epitopes and mimotopes of anti-YghJ antibodies in the sera was used. This is the first time that the effect of glycosylation of a recombinant bacterial antigen has been studied at the peptide epitope level. Results: The study identifies differences in the immune response for (non)-glycosylated antigens in rabbits and pigs and compares them to a large group of patients with UTI, which have been diagnosed as positive for various bacterial pathogens. We identified glycosylation-specific peptide epitopes, a large immunological similarity between different UTI pathogens, and a broad peptide epitope pattern in patients and animals, which could result in a variable response in patients upon vaccination. Discussion: This epitope analysis indicates that the vaccination of rabbits and pigs raises antibodies that translate well into the human immune system. This study underlines the importance of glycosylation in bacterial vaccines and provides detailed immune diagnostic methods to understand individual immune responses to vaccines.


Subject(s)
Escherichia coli Proteins , Urinary Tract Infections , Humans , Rabbits , Swine , Animals , Epitopes , Antigens, Bacterial , Glycosylation , Escherichia coli , Urinary Tract Infections/microbiology , Peptides , Mammals , Metalloproteases
7.
Gels ; 9(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37888399

ABSTRACT

Surgical site infections (SSIs) are among the most frequent healthcare-associated infections, resulting in high morbidity, mortality, and cost. While correct hygiene measures and prophylactic antibiotics are effective in preventing SSIs, even in modern healthcare settings where recommended guidelines are strictly followed, SSIs persist as a considerable problem that has proven hard to solve. Surgical procedures involving the implantation of foreign bodies are particularly problematic due to the ability of microorganisms to adhere to and colonize the implanted material and form resilient biofilms. In these cases, SSIs may develop even months after implantation and can be difficult to treat once established. Locally applied antibiotics or specifically engineered implant materials with built-in antibiotic-release properties may prevent these complications and, ultimately, require fewer antibiotics compared to those that are systemically administered. In this study, we demonstrated an antimicrobial material concept with intended use in artificial vascular grafts. The material is a silicone-hydrogel interpenetrating polymer network developed earlier for drug-release catheters. In this study, we designed the material for permanent implantation and tested the drug-loading and drug-release properties of the material to prevent the growth of a typical causative pathogen of SSIs, Staphylococcus aureus. The novelty of this study is demonstrated through the antimicrobial properties of the material in vitro after loading it with an advantageous combination, minocycline and rifampicin, which subsequently showed superiority over the state-of-the-art (Propaten) artificial graft material in a large-animal study, using a novel porcine tissue-implantation model.

8.
Euro Surveill ; 28(36)2023 09.
Article in English | MEDLINE | ID: mdl-37676147

ABSTRACT

We describe 10 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant BA.2.86 detected in Denmark, including molecular characteristics and results from wastewater surveillance that indicate that the variant is circulating in the country at a low level. This new variant with many spike gene mutations was classified as a variant under monitoring by the World Health Organization on 17 August 2023. Further global monitoring of COVID-19, BA.2.86 and other SARS-CoV-2 variants is highly warranted.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring , Denmark/epidemiology
9.
Sci Rep ; 13(1): 12404, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524716

ABSTRACT

Urinary tract infection is a common disease in pigs and a major reason for sows to be culled. The disease, however, is difficult to diagnose due to lack of distinct clinical signs in the animals. We evaluated the diagnostic value of two commercial urine dipstick tests in 10 pigs using an experimental model of Escherichia coli urinary tract infection. Urine collected at baseline and 48 h after inoculation were analyzed. We show that dipstick tests positive of blood, leucocytes and particularly nitrite are very specific for E. coli UTI with a 100% positive predictive value.


Subject(s)
Urinary Tract Infections , Uropathogenic Escherichia coli , Female , Swine , Animals , Sensitivity and Specificity , Urinary Tract Infections/diagnosis , Urinary Tract Infections/veterinary , Urinary Tract Infections/urine , Urinalysis , Predictive Value of Tests
10.
Microb Pathog ; 173(Pt A): 105817, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244593

ABSTRACT

OBJECTIVES: Experiments in murine models of urinary tract infection (UTI) show that uropathogenic Escherichia coli (UPEC) form bacterial reservoirs in the bladder tissue that can survive beta lactam antibiotics and give rise to reinfection. The observed reinfection cascade suggests intracellular bacterial persistence as a possible explanation for recurrent UTI in humans. To test this hypothesis in an animal model closer to humans, we here investigated whether UPEC infecting the bladders of experimentally inoculated pigs are able to survive standard oral mecillinam treatment. Moreover, we analyzed the infected pig bladders by microscopy for the presence of intracellular UPEC colonies. METHODS: Seven pigs were experimentally inoculated with the UPEC cystitis strain, UTI89, to induce cystitis. After 5 days of infections, a 3-day oral treatment with the extracellularly active ß-lactam, mecillinam, was initiated. The infection was monitored with regular urine and blood samples. When terminated, whole bladders were removed and homogenized to quantify viable intracellular bacteria. In addition, two pigs were inoculated with UTI89pMAN01 constitutively expressing green fluorescent protein and the bladders subsequently analyzed by microscopy for bacterial location and morphology. RESULTS: Experimental inoculation resulted in cystitis in all animals. After 3-day treatment with mecillinam, no viable UPEC were detectable in urine or bladder homogenates. Microscopy analysis of pig bladders at 12 h post infection, revealed no detectable intracellular bacterial colonies and no filamentous UPEC phenotypes were identified. CONCLUSIONS: Pigs experimentally infected with UPEC completely clear their infection upon mecillinam treatment, which contrasts earlier findings from similar experiments in mice. Moreover, the hallmarks of induced UTI in mice, i.e. intracellular bacterial communities and bacterial filamentation, could not be identically reproduced in a pig model of acute UTI. This result suggests that significant differences might exist between UTI in mice and larger mammals, and therefore perhaps also between mice and humans. Additional studies are needed to reveal details on the Escherichia coli acute UTI pathogenesis cascade in larger mammals to assess to which extent observations in mice can be transferred to humans.


Subject(s)
Cystitis , Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Mice , Swine , Animals , Uropathogenic Escherichia coli/genetics , Urinary Bladder/microbiology , Amdinocillin , Reinfection , Cystitis/microbiology , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Bacteria , Mammals
11.
Sci Rep ; 12(1): 16436, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180775

ABSTRACT

The worldwide increase of antimicrobial resistance (AMR) is a serious threat to human health. To avert the spread of AMR, fast reliable diagnostics tools that facilitate optimal antibiotic stewardship are an unmet need. In this regard, Raman spectroscopy promises rapid label- and culture-free identification and antimicrobial susceptibility testing (AST) in a single step. However, even though many Raman-based bacteria-identification and AST studies have demonstrated impressive results, some shortcomings must be addressed. To bridge the gap between proof-of-concept studies and clinical application, we have developed machine learning techniques in combination with a novel data-augmentation algorithm, for fast identification of minimally prepared bacteria phenotypes and the distinctions of methicillin-resistant (MR) from methicillin-susceptible (MS) bacteria. For this we have implemented a spectral transformer model for hyper-spectral Raman images of bacteria. We show that our model outperforms the standard convolutional neural network models on a multitude of classification problems, both in terms of accuracy and in terms of training time. We attain more than 96% classification accuracy on a dataset consisting of 15 different classes and 95.6% classification accuracy for six MR-MS bacteria species. More importantly, our results are obtained using only fast and easy-to-produce training and test data.


Subject(s)
Anti-Infective Agents , Spectrum Analysis, Raman , Bacteria , Humans , Machine Learning , Methicillin , Phenotype , Spectrum Analysis, Raman/methods
12.
Ugeskr Laeger ; 184(31)2022 08 01.
Article in Danish | MEDLINE | ID: mdl-35959824

ABSTRACT

Urinary tract infection is a colonisation of the urinary tract with uropathogenic bacteria, leading to an inflammatory response. The increasing antimicrobial resistance presents major challenges for both the individual and our society. The goal is to reduce antimicrobial resistance and pave the way for a new era in the management of recurrent urinary tract infections. This review describes the definitions of urinary tract infection (simple, recurrent, and complicated) as well as examination and treatment recommendations. The future and most common non-antibiotic alternatives are discussed.


Subject(s)
Anti-Bacterial Agents , Urinary Tract Infections , Anti-Bacterial Agents/therapeutic use , Humans , Urinary Tract Infections/diagnosis , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
13.
Urol Oncol ; 40(9): 409.e19-409.e26, 2022 09.
Article in English | MEDLINE | ID: mdl-35753849

ABSTRACT

BACKGROUND: Intravesical treatment of bladder cancer is preferred over systemic administration. However, the efficacy of intravesical instillations is challenged by the periodic voiding that flushes out the instilled drug and ultimately reduces drug exposure to the bladder epithelium. Here, we demonstrate a new catheter-integrated drug-delivery concept that utilizes a silicone-based interpenetrating polymer network (IPN) as material for the catheter balloon, to facilitate continuous release of the bladder cancer adjuvant, Mitomycin C, from a balloon-reservoir to the urinary bladder. METHODS: Long-term release properties and anti-carcinoma cell efficacy of released drug was investigated in vitro. Short-term release experiments were performed in live pigs to evaluate the IPN prototype catheter in a physiological relevant environment in vivo. RESULTS: Sustained zero-order release of Mitomycin C was achieved for 12 days in vitro without refilling the balloon. Mitomycin C was released from the IPN-balloons into the urinary bladder of live pigs in concentrations adequate to inhibit carcinoma cell growth. CONCLUSION: The IPN catheter represents a new drug-delivery concept for prolonged Mitomycin C delivery to the urinary bladder.


Subject(s)
Mitomycin , Urinary Bladder Neoplasms , Administration, Intravesical , Animals , Antibiotics, Antineoplastic , Catheters , Drug Delivery Systems , Pharmaceutical Preparations , Swine
14.
J Med Microbiol ; 71(4)2022 Apr.
Article in English | MEDLINE | ID: mdl-35475768

ABSTRACT

Urinary tract infection (UTI) is one of the most common bacterial infections worldwide. Experimental models that accurately reflect the high susceptibility to UTI in humans have, however, been lacking. This situation has limited detailed research into the early bladder colonization by uropathogens and the early innate defence mechanisms elicited to prevent this. We recently presented a model of urinary tract infection in pigs, animals that are naturally susceptible to UTI and have greater similarity to the physiology and anatomy of the human urinary tract than traditional rodent UTI models. In the current study, we used the pig model to investigate the minimal infectious inoculum of uropathogenic Escherichia coli, the most common cause of urinary tract infection. We show that in this animal a few individual bacteria that come into contact with the urothelium can give rise to fulminant cystitis, indicating the high infectious potential of uropathogenic E. coli.


Subject(s)
Cystitis , Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Cystitis/microbiology , Escherichia coli Infections/microbiology , Female , Humans , Male , Swine , Urinary Bladder/microbiology , Urinary Tract Infections/microbiology
16.
Clin Microbiol Infect ; 28(2): 304.e1-304.e3, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34763059

ABSTRACT

OBJECTIVES: Assessment of whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been propagated during intestinal passage and infectivity is conserved when shed rectally by hospitalized individuals. METHODS: An exploratory cohort study including 28 inpatients with coronavirus disease 2019 with estimation of RNA levels by RT-PCR and of viral infectivity by culturing of viral material sampled concomitantly and identically from pharynx and rectum. RESULTS: SARS-CoV-2 RNA was detected more frequently (91%, 30/33 versus 42%, 14/33, p <0.0001) and at higher concentrations (median levels 2 190 186 IU/mL versus 13 014 IU/mL, p <0.0001) in the pharyngeal swabs than in the rectal swabs. For all sample pairs (n = 33) the rectal swabs contained undetectable or lower SARS-CoV-2 RNA concentrations than their paired pharyngeal swabs. Replicative virus was found in 37% (11/30) of the PCR-positive pharyngeal swabs, whereas none of the PCR-positive rectal swabs could be cultured (0%, 0/14) despite containing SARS-CoV-2 RNA concentrations up to 1 544 691 IU/mL. CONCLUSIONS: Our data draw into question whether SARS-CoV-2 is transmitted readily from faeces.


Subject(s)
COVID-19 , SARS-CoV-2 , Cohort Studies , Humans , Inpatients , Pharynx , RNA, Viral/genetics , Virus Shedding
17.
Front Med (Lausanne) ; 8: 733676, 2021.
Article in English | MEDLINE | ID: mdl-34778297

ABSTRACT

A new easy-to-use online bioinformatic tool analyzing whole genome sequences of healthcare associated bacteria was used by a local infection control unit to retrospectively map genetic relationship of isolates of E. faecium carrying resistance genes to vancomycin in a hospital. Three clusters of isolates were detected over a period of 5 years, suggesting transmission between patients. Individual relatedness between isolates within each cluster was established by SNP analyses provided by the system. Genetic antimicrobial resistance mechanisms to antibiotics other than vancomycin were identified. The results suggest that the system is suited for hospital surveillance of E. faecium carrying resistance genes to vancomycin in settings with access to next Generation Sequencing without bioinformatic expertise for interpretation of the genome sequences.

18.
Microbiology (Reading) ; 167(10)2021 10.
Article in English | MEDLINE | ID: mdl-34623231

ABSTRACT

Most uropathogenic Escherichia coli (UPEC) express type-1 fimbriae (T1F), a key virulence factor for urinary tract infection (UTI) in mice. Evidence that conclusively associates this pilus with uropathogenesis in humans has, however, been difficult to obtain. We used an experimental porcine model of cystitis to assess the role of T1F in larger mammals more closely related to humans. Thirty-one pigs were infected with UPEC strain UTI89 or its T1F deficient mutant, UTI89ΔfimH, at inoculum titres of 102 to 108 colony forming units per millilitre. Urine and blood samples were collected and analysed 7 and 14 days post-inoculation, and whole bladders were removed at day 14 and analysed for uroepithelium-associated UPEC. All animals were consistently infected and reached high urine titres independent of inoculum titre. UTI89ΔfimH successfully colonized the bladders of 1/6 pigs compared to 6/6 for the wild-type strain. Intracellular UPEC were detectable in low numbers in whole bladder explants. In conclusion, low doses of UPEC are able to establish robust infections in pigs, similar to what is presumed in humans. T1F are critical for UPEC to surpass initial bottlenecks during infection but may be dispensable once infection is established. While supporting the conclusions from mice studies regarding a general importance of T1F in successfully infecting the host, the porcine UTI models' natural high, more human-like, susceptibility to infection, allowed us to demonstrate a pivotal role of T1F in initial establishment of infection upon a realistic low-inoculum introduction of UPEC in the bladder.


Subject(s)
Cystitis/microbiology , Escherichia coli Infections/microbiology , Fimbriae, Bacterial/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/metabolism , Animals , Antibodies, Bacterial/blood , Bacterial Load , Colony Count, Microbial , Disease Models, Animal , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/immunology , Gentamicins/pharmacology , Microbial Viability/drug effects , Mutation , Swine , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/immunology , Virulence Factors/genetics
19.
BMC Infect Dis ; 21(1): 743, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344321

ABSTRACT

BACKGROUND: The duration of viable Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) shedding in immunocompromised patients is still unknown. This case report describes the duration of viable SARS-CoV-2 in two immunocompromised patients with completely different clinical courses and further addresses the immunological aspects. CASE PRESENTATIONS: Oropharyngeal swaps were collected continuously during hospitalization for two immunocompromised patients infected with SARS-CoV-2 and sent for analysis to real time reverse transcription polymerase chain reaction (RT-PCR), viral culture assessed by plaque assay and full genome sequencing. Blood samples for flow cytometry and further immunological analysis were taken once during admission. One patient was without symptoms of Coronavirus disease 2019 (COVID-19) whereas the other had severe respiratory symptoms requiring a stay at an intensive care unit (ICU) and treatment with remdesivir and dexamethasone. Despite their difference in clinical courses, they both continuously shed SARS-CoV-2 with high viral loads in culture. Both patients had undetectable anti SARS-CoV-2 IgG levels about 2 weeks after the first positive real time RT-PCR test of SARS-CoV-2, marked expansions of virus reactive CD8+ T cells but cellular markers indicative of attenuated humoral immunity. CONCLUSIONS: Our case illustrates the importance of distinguishing isolation guidelines for patients infected with SARS-CoV-2 according to their immunological status. Furthermore, it demonstrates the need for immune markers relating to viral shedding in immunocompromised patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunocompromised Host , Virus Shedding
20.
Front Microbiol ; 12: 685698, 2021.
Article in English | MEDLINE | ID: mdl-34248906

ABSTRACT

Background: Catheter-associated urinary tract infection (CAUTI) is a frequent community-acquired infection and the most common nosocomial infection. Here, we developed a novel antimicrobial catheter concept that utilizes a silicone-based interpenetrating polymer network (IPN) as balloon material to facilitate a topical slow-release prophylaxis of antibacterial agents across the balloon to the urinary bladder. Methods: The balloon material was achieved by modifying low shore hardness silicone tubes with a hydrogel interpenetrating polymer in supercritical CO2 using the sequential method. Release properties and antibacterial efficacy of the IPN balloon treatment concept was investigated in vitro and in a porcine CAUTI model developed for the study. In the latter, Bactiguard Infection Protection (BIP) Foley catheters were also assessed to enable benchmark with the traditional antimicrobial coating principle. Results: Uropathogenic Escherichia coli was undetectable in urinary bladders and on retrieved catheters in the IPN treatment group as compared to control that revealed significant bacteriuria (>105 colony forming units/ml) as well as catheter-associated biofilm. The BIP catheters failed to prevent E. coli colonization of the bladder but significantly reduced catheter biofilm formation compared to the control. Conclusion: The IPN-catheter concept provides a novel, promising delivery route for local treatment in the urinary tract.

SELECTION OF CITATIONS
SEARCH DETAIL
...