Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 6: e6090, 2018.
Article in English | MEDLINE | ID: mdl-30581677

ABSTRACT

Rapid and transient changes in pH frequently occur in soil, impacting dissolved organic matter (DOM) and other chemical attributes such as redox and oxygen conditions. Although we have detailed knowledge on microbial adaptation to long-term pH changes, little is known about the response of soil microbial communities to rapid pH change, nor how excess DOM might affect key aspects of microbial N processing. We used potassium hydroxide (KOH) to induce a range of soil pH changes likely to be observed after livestock urine or urea fertilizer application to soil. We also focus on nitrate reductive processes by incubating microcosms under anaerobic conditions for up to 48 h. Soil pH was elevated from 4.7 to 6.7, 8.3 or 8.8, and up to 240-fold higher DOM was mobilized by KOH compared to the controls. This increased microbial metabolism but there was no correlation between DOM concentrations and CO2 respiration nor N-metabolism rates. Microbial communities became dominated by Firmicutes bacteria within 16 h, while few changes were observed in the fungal communities. Changes in N-biogeochemistry were rapid and denitrification enzyme activity (DEA) increased up to 25-fold with the highest rates occurring in microcosms at pH 8.3 that had been incubated for 24-hour prior to measuring DEA. Nitrous oxide reductase was inactive in the pH 4.7 controls but at pH 8.3 the reduction rates exceeded 3,000 ng N2-N g-1 h-1 in the presence of native DOM. Evidence for dissimilatory nitrate reduction to ammonium and/or organic matter mineralisation was observed with ammonium increasing to concentrations up to 10 times the original native soil concentrations while significant concentrations of nitrate were utilised. Pure isolates from the microcosms were dominated by Bacillus spp. and exhibited varying nitrate reductive potential.

2.
J Environ Qual ; 40(2): 468-76, 2011.
Article in English | MEDLINE | ID: mdl-21520754

ABSTRACT

Nitrous oxide (N2O) emissions from grazing animal excreta are estimated to be responsible for 1.5 Tg of the total 6.7 Tg of anthropogenic N2O emissions. This study was conducted to determine the in situ effect of incorporating biochar, into soil, on N2O emissions from bovine urine patches and associated pasture uptake of N. The effects of biochar rate (0-30 t ha(-1)), following soil incorporation, were investigated on ruminant urine-derived N2O fluxes, N uptake by pasture, and pasture yield. During an 86-d spring-summer period, where irrigation and rainfall occurred, the N2O fluxes from 15N labeled ruminant urine patches were reduced by >50%, after incorporating 30 t ha(-1) of biochar. Taking into account the N2O emissions from the control plots, 30 t ha(-1) ofbiochar reduced the N2O emission factor from urine by 70%. The atom% 15N enrichment of the N2O emitted was lower in the 30 t ha(-1) biochar treatment, indicating less urine-N contributed to the N2O flux. Soil NO3- -N concentrations were lower with increasing biochar rate during the first 30 d following urine deposition. No differences occurred, due to biochar addition, with respect to dry matter yields, herbage N content, or recovery of 15N applied in herbage. Incorporating biochar into the soil can significantly diminish ruminant urine-derived N2O emissions. Further work is required to determine the persistence of the observed effect and to fully understand the mechanism(s) of the observed reduction in N2O fluxes.


Subject(s)
Charcoal/chemistry , Nitrous Oxide/metabolism , Soil/chemistry , Urine/chemistry , Animals , Cattle , Humans , Nitrogen/chemistry , Nitrous Oxide/chemistry , Volatilization , Weather
3.
Environ Sci Technol ; 42(23): 8709-14, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-19192786

ABSTRACT

Manganese oxides are widespread in the environment and their surface reactivity has the potential to modifythe geochemical behavior of uranium. We have investigated the effect of different concentrations of U and Mn on the coupled biogeochemical oxidation-reduction reactions of U and Mn. Experiments conducted in the presence of Mn(II)-oxidizing spores from Bacillus sp. strain SG-1 and 5% headspace oxygen show that the Mn oxides produced by these spores can rapidly oxidize UO2. Thirty to fifty times more UO2 is oxidized in the presence of Mn oxides compared to Mn oxide free controls. As a consequence of this U02 oxidation, Mn oxides are reduced to soluble Mn(II) that can be reoxidized by SG-1 spores. SG-1 spores cannot directly oxidize U02, but U02 oxidation proceeds rapidly with Mn(II) concentrations of <5 microM. The rate of UO2 oxidation is equal to the rate of MnO2 reduction with UO2 oxidation controlled by the initial concentrations of UO2, dissolved Mn(II) (in systems with spores), or Mn(IV) oxides (in systems containing preformed MnO2). U(VI) and UO2 decrease the Mn(II) oxidation rate in different ways by inhibiting the Mn(II)-oxidizing enzyme or decreasing the available Mn(II). These results emphasize the need to consider the impact of Mn(II)-oxidizing bacteria when predicting the potential for U02 oxidation in the subsurface.


Subject(s)
Bacillus/drug effects , Bacillus/metabolism , Manganese/metabolism , Manganese/pharmacology , Spores, Bacterial/metabolism , Uranium Compounds/metabolism , Uranium/pharmacology , Biodegradation, Environmental/drug effects , Catalysis/drug effects , Environment , Kinetics , Manganese Compounds/metabolism , Oxidation-Reduction/drug effects , Oxides/metabolism , Spores, Bacterial/drug effects
4.
Curr Microbiol ; 48(5): 341-7, 2004 May.
Article in English | MEDLINE | ID: mdl-15060729

ABSTRACT

Two environmental sites in New Zealand were sampled (e.g., water and sediment) for bacterial isolates that could use either arsenite as an electron donor or arsenate as an electron acceptor under aerobic and anaerobic growth conditions, respectively. These two sites were subjected to widespread arsenic contamination from mine tailings generated from historic gold mining activities or from geothermal effluent. No bacteria were isolated from these sites that could utilize arsenite or arsenate under the respective growth conditions tested, but a number of chemoheterotrophic bacteria were isolated that could grow in the presence of high concentrations of arsenic species. In total, 17 morphologically distinct arsenic-resistant heterotrophic bacteria isolates were enriched from the sediment samples, and analysis of the 16S rRNA gene sequence of these bacteria revealed them to be members of the genera Exiguobacterium, Aeromonas, Bacillus, Pseudomonas, Escherichia, and Acinetobacter. Two isolates, Exiguobacterium sp. WK6 and Aeromonas sp. CA1, were of particular interest because they appeared to gain metabolic energy from arsenate under aerobic growth conditions, as demonstrated by an increase in cellular growth yield and growth rate in the presence of arsenate. Both bacteria were capable of reducing arsenate to arsenite via a non-respiratory mechanism. Strain WK6 was positive for arsB, but the pathway of arsenate reduction for isolate CA1 was via a hitherto unknown mechanism. These isolates were not gaining an energetic advantage from arsenate or arsenite utilization, but were instead detoxifying arsenate to arsenite. As a subsidiary process to arsenate reduction, the external pH of the growth medium increased (i.e., became more alkaline), allowing these bacteria to grow for extended periods of time.


Subject(s)
Arsenates/metabolism , Arsenic , Bacteria/isolation & purification , Environmental Pollutants , Geologic Sediments/microbiology , Water Microbiology , Acinetobacter/classification , Acinetobacter/isolation & purification , Acinetobacter/metabolism , Aerobiosis , Aeromonas/classification , Aeromonas/isolation & purification , Aeromonas/metabolism , Anaerobiosis , Arsenic/pharmacology , Arsenites/metabolism , Bacillus/classification , Bacillus/isolation & purification , Bacillus/metabolism , Bacteria/classification , Bacteria/metabolism , Biomass , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , Drug Resistance, Bacterial , Environmental Pollutants/pharmacology , Escherichia/classification , Escherichia/isolation & purification , Escherichia/metabolism , Genes, Bacterial , Genes, rRNA , Hydrogen-Ion Concentration , New Zealand , Oxidation-Reduction , Pseudomonas/classification , Pseudomonas/isolation & purification , Pseudomonas/metabolism , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...