Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Ecology ; : e4328, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782017

ABSTRACT

Since 1968, the Australian Dung Beetle Project has carried out field releases of 43 deliberately introduced dung beetle species for the biological control of livestock dung and dung-breeding pests. Of these, 23 species are known to have become established. For most of these species, sufficient time has elapsed for population expansion to fill the extent of their potential geographic range through both natural and human-assisted dispersal. Consequently, over the last 20 years, extensive efforts have been made to quantify the current distribution of these introduced dung beetles, as well as the seasonal and spatial variation in their activity levels. Much of these data and their associated metadata have remained unpublished, and they have not previously been synthesized into a cohesive dataset. Here, we collate and report data from the three largest dung beetle monitoring projects from 2001 to 2022. Together, these projects encompass data collected from across Australia, and include records for all 23 species of established dung beetles introduced for biocontrol purposes. In total, these data include 22,718 presence records and 213,538 absence records collected during 10,272 sampling events at 546 locations. Most presence records (97%) include abundance data. In total, 1,752,807 dung beetles were identified as part of these data. The distributional occurrence and abundance data can be used to explore questions such as factors influencing dung beetle species distributions, dung beetle biocontrol, and insect-mediated ecosystem services. These data are provided under a CC-BY-NC 4.0 license and users are encouraged to cite this data paper when using the data.

2.
Proc Biol Sci ; 291(2019): 20232885, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38503337

ABSTRACT

The ecosystem services provided by dung beetles are well known and valued. Dung beetles bury dung for feeding and breeding, and it is generally thought that the process of burying dung increases nutrient uptake by plant roots, which promotes plant growth. Many studies have tested the effects of dung beetles on plant growth, but there has been no quantitative synthesis of these studies. Here we use a multi-level meta-analysis to estimate the average effect of dung beetles on plant growth and investigate factors that moderate this effect. We identified 28 publications that investigated dung beetle effects on plant growth. Of these, 24 contained the minimum quantitative data necessary to include in a meta-analysis. Overall, we found that dung beetles increased plant growth by 17%; the 95% CI for possible values for the true increase in plant growth that were most compatible with our data, given our statistical model, ranged from 1% to 35%. We found evidence that the dung beetle-plant growth relationship is influenced by the plant measurement type and the number of beetles accessing the dung. However, beetles did not increase plant growth in all quantitative trials, as individual effect sizes ranged from -72% to 806%, suggesting important context-dependence in the provision of ecosystem services.


Subject(s)
Coleoptera , Ecosystem , Animals , Plant Breeding , Plants , Feces
3.
ACG Case Rep J ; 9(1): e00718, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34977262

ABSTRACT

Adult intestinal toxemia botulism (ITB) is a rare illness that can be fatal if not recognized. ITB can occur when botulinum neurotoxin-producing clostridia colonize the intestine. Underlying intestinal abnormalities associated with dysbiosis are likely a prerequisite for colonization. Dysbiosis seems necessary for spore germination and neurotoxin production. Botulism neurotoxins are the most lethal poisons known and are classified into 7 serotypes: A through G. The clinical presentation consists of cranial nerve abnormalities and descending flaccid paralysis. Prompt recognition and treatment with botulism antitoxin and supportive measures is often successful, but delayed recognition can be fatal. In this study, we present a case of a 40-year-old woman with Crohn's disease who developed ITB. This is the first case in literature to report adult intestinal botulism from Clostridium botulinum producing toxin B and F in the same patient.

4.
Sci Transl Med ; 13(587)2021 03 31.
Article in English | MEDLINE | ID: mdl-33790022

ABSTRACT

The development and survival of cancer cells require adaptive mechanisms to stress. Such adaptations can confer intrinsic vulnerabilities, enabling the selective targeting of cancer cells. Through a pooled in vivo short hairpin RNA (shRNA) screen, we identified the adenosine triphosphatase associated with diverse cellular activities (AAA-ATPase) valosin-containing protein (VCP) as a top stress-related vulnerability in acute myeloid leukemia (AML). We established that AML was the most responsive disease to chemical inhibition of VCP across a panel of 16 cancer types. The sensitivity to VCP inhibition of human AML cell lines, primary patient samples, and syngeneic and xenograft mouse models of AML was validated using VCP-directed shRNAs, overexpression of a dominant-negative VCP mutant, and chemical inhibition. By combining mass spectrometry-based analysis of the VCP interactome and phospho-signaling studies, we determined that VCP is important for ataxia telangiectasia mutated (ATM) kinase activation and subsequent DNA repair through homologous recombination in AML. A second-generation VCP inhibitor, CB-5339, was then developed and characterized. Efficacy and safety of CB-5339 were validated in multiple AML models, including syngeneic and patient-derived xenograft murine models. We further demonstrated that combining DNA-damaging agents, such as anthracyclines, with CB-5339 treatment synergizes to impair leukemic growth in an MLL-AF9-driven AML murine model. These studies support the clinical testing of CB-5339 as a single agent or in combination with standard-of-care DNA-damaging chemotherapy for the treatment of AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Adenosine Triphosphatases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , DNA Repair , Humans , Leukemia, Myeloid, Acute/drug therapy , Mice , Valosin Containing Protein
5.
ACS Chem Biol ; 14(2): 236-244, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30640450

ABSTRACT

RUVBL1 and RUVBL2 are ATPases associated with diverse cellular activities (AAAs) that form a complex involved in a variety of cellular processes, including chromatin remodeling and regulation of gene expression. RUVBLs have a strong link to oncogenesis, where overexpression is correlated with tumor growth and poor prognosis in several cancer types. CB-6644, an allosteric small-molecule inhibitor of the ATPase activity of the RUVBL1/2 complex, interacts specifically with RUVBL1/2 in cancer cells, leading to cell death. Importantly, drug-acquired-resistant cell clones have amino acid mutations in either RUVBL1 or RUVBL2, suggesting that cell killing is an on-target consequence of RUVBL1/2 engagement. In xenograft models of acute myeloid leukemia and multiple myeloma, CB-6644 significantly reduced tumor growth without obvious toxicity. This work demonstrates the therapeutic potential of targeting RUVBLs in the treatment of cancer and establishes a chemical entity for probing the many facets of RUVBL biology.


Subject(s)
ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Benzamides/pharmacology , Carrier Proteins/antagonists & inhibitors , DNA Helicases/antagonists & inhibitors , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , HCT116 Cells , Humans , Mutation , Protein Binding
6.
Mol Cancer Ther ; 16(11): 2375-2386, 2017 11.
Article in English | MEDLINE | ID: mdl-28878026

ABSTRACT

Inhibition of the AAA ATPase, p97, was recently shown to be a novel method for targeting the ubiquitin proteasome system, and CB-5083, a first-in-class inhibitor of p97, has demonstrated broad antitumor activity in a range of both hematologic and solid tumor models. Here, we show that CB-5083 has robust activity against multiple myeloma cell lines and a number of in vivo multiple myeloma models. Treatment with CB-5083 is associated with accumulation of ubiquitinated proteins, induction of the unfolded protein response, and apoptosis. CB-5083 decreases viability in multiple myeloma cell lines and patient-derived multiple myeloma cells, including those with background proteasome inhibitor (PI) resistance. CB-5083 has a unique mechanism of action that combines well with PIs, which is likely owing to the p97-dependent retro-translocation of the transcription factor, Nrf1, which transcribes proteasome subunit genes following exposure to a PI. In vivo studies using clinically relevant multiple myeloma models demonstrate that single-agent CB-5083 inhibits tumor growth and combines well with multiple myeloma standard-of-care agents. Our preclinical data demonstrate the efficacy of CB-5083 in several multiple myeloma disease models and provide the rationale for clinical evaluation as monotherapy and in combination in multiple myeloma. Mol Cancer Ther; 16(11); 2375-86. ©2017 AACR.


Subject(s)
Adenosine Triphosphatases/genetics , Indoles/administration & dosage , Multiple Myeloma/drug therapy , Nuclear Proteins/genetics , Nuclear Respiratory Factor 1/genetics , Proteasome Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Adenosine Triphosphatases/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Nuclear Proteins/antagonists & inhibitors , Proteasome Endopeptidase Complex/drug effects , Ubiquitin/genetics , Unfolded Protein Response/drug effects , Xenograft Model Antitumor Assays
7.
J Med Chem ; 58(24): 9480-97, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26565666

ABSTRACT

The AAA-ATPase p97 plays vital roles in mechanisms of protein homeostasis, including ubiquitin-proteasome system (UPS) mediated protein degradation, endoplasmic reticulum-associated degradation (ERAD), and autophagy. Herein we describe our lead optimization efforts focused on in vitro potency, ADME, and pharmaceutical properties that led to the discovery of a potent, ATP-competitive, D2-selective, and orally bioavailable p97 inhibitor 71, CB-5083. Treatment of tumor cells with 71 leads to significant accumulation of markers associated with inhibition of UPS and ERAD functions, which induces irresolvable proteotoxic stress and cell death. In tumor bearing mice, oral administration of 71 causes rapid accumulation of markers of the unfolded protein response (UPR) and subsequently induces apoptosis leading to sustained antitumor activity in in vivo xenograft models of both solid and hematological tumors. 71 has been taken into phase 1 clinical trials in patients with multiple myeloma and solid tumors.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Antineoplastic Agents/chemistry , Indoles/chemistry , Nuclear Proteins/antagonists & inhibitors , Pyrimidines/chemistry , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Apoptosis , Biological Availability , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Heterografts , Humans , Indoles/pharmacokinetics , Indoles/pharmacology , Mice, Nude , Molecular Docking Simulation , Neoplasm Transplantation , Proteasome Endopeptidase Complex/metabolism , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Structure-Activity Relationship , Ubiquitin/metabolism , Unfolded Protein Response
8.
Cancer Cell ; 28(5): 653-665, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26555175

ABSTRACT

p97 is a AAA-ATPase with multiple cellular functions, one of which is critical regulation of protein homeostasis pathways. We describe the characterization of CB-5083, a potent, selective, and orally bioavailable inhibitor of p97. Treatment of tumor cells with CB-5083 leads to accumulation of poly-ubiquitinated proteins, retention of endoplasmic reticulum-associated degradation (ERAD) substrates, and generation of irresolvable proteotoxic stress, leading to activation of the apoptotic arm of the unfolded protein response. In xenograft models, CB-5083 causes modulation of key p97-related pathways, induces apoptosis, and has antitumor activity in a broad range of both hematological and solid tumor models. Molecular determinants of CB-5083 activity include expression of genes in the ERAD pathway, providing a potential strategy for patient selection.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Homeostasis/drug effects , Neoplasms/drug therapy , Nuclear Proteins/antagonists & inhibitors , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , CRISPR-Cas Systems , Cell Line, Tumor , Endoplasmic Reticulum-Associated Degradation/drug effects , Enzyme Inhibitors/chemistry , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , HEK293 Cells , Humans , Indoles/chemistry , Indoles/pharmacology , K562 Cells , Mice, Nude , Mice, SCID , Molecular Structure , Molecular Targeted Therapy/methods , Neoplasms/genetics , Neoplasms/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitinated Proteins/metabolism , Xenograft Model Antitumor Assays
9.
Proc Natl Acad Sci U S A ; 111(8): 2984-9, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24516147

ABSTRACT

The ATP-dependent degradation of polyubiquitylated proteins by the 26S proteasome is essential for the maintenance of proteome stability and the regulation of a plethora of cellular processes. Degradation of substrates is preceded by the removal of polyubiquitin moieties through the isopeptidase activity of the subunit Rpn11. Here we describe three crystal structures of the heterodimer of the Mpr1-Pad1-N-terminal domains of Rpn8 and Rpn11, crystallized as a fusion protein in complex with a nanobody. This fusion protein exhibits modest deubiquitylation activity toward a model substrate. Full activation requires incorporation of Rpn11 into the 26S proteasome and is dependent on ATP hydrolysis, suggesting that substrate processing and polyubiquitin removal are coupled. Based on our structures, we propose that premature activation is prevented by the combined effects of low intrinsic ubiquitin affinity, an insertion segment acting as a physical barrier across the substrate access channel, and a conformationally unstable catalytic loop in Rpn11. The docking of the structure into the proteasome EM density revealed contacts of Rpn11 with ATPase subunits, which likely stabilize the active conformation and boost the affinity for the proximal ubiquitin moiety. The narrow space around the Rpn11 active site at the entrance to the ATPase ring pore is likely to prevent erroneous deubiquitylation of folded proteins.


Subject(s)
Endopeptidases/chemistry , Models, Molecular , Proteasome Endopeptidase Complex/chemistry , Protein Conformation , Recombinant Fusion Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Crystallography , Dimerization , Endopeptidases/metabolism , Models, Biological , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism
10.
Nature ; 501(7466): 232-6, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23934108

ABSTRACT

KRAS and BRAF activating mutations drive tumorigenesis through constitutive activation of the MAPK pathway. As these tumours represent an area of high unmet medical need, multiple allosteric MEK inhibitors, which inhibit MAPK signalling in both genotypes, are being tested in clinical trials. Impressive single-agent activity in BRAF-mutant melanoma has been observed; however, efficacy has been far less robust in KRAS-mutant disease. Here we show that, owing to distinct mechanisms regulating MEK activation in KRAS- versus BRAF-driven tumours, different mechanisms of inhibition are required for optimal antitumour activity in each genotype. Structural and functional analysis illustrates that MEK inhibitors with superior efficacy in KRAS-driven tumours (GDC-0623 and G-573, the former currently in phase I clinical trials) form a strong hydrogen-bond interaction with S212 in MEK that is critical for blocking MEK feedback phosphorylation by wild-type RAF. Conversely, potent inhibition of active, phosphorylated MEK is required for strong inhibition of the MAPK pathway in BRAF-mutant tumours, resulting in superior efficacy in this genotype with GDC-0973 (also known as cobimetinib), a MEK inhibitor currently in phase III clinical trials. Our study highlights that differences in the activation state of MEK in KRAS-mutant tumours versus BRAF-mutant tumours can be exploited through the design of inhibitors that uniquely target these distinct activation states of MEK. These inhibitors are currently being evaluated in clinical trials to determine whether improvements in therapeutic index within KRAS versus BRAF preclinical models translate to improved clinical responses in patients.


Subject(s)
Genes, ras/genetics , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neoplasms/enzymology , Neoplasms/genetics , Oncogene Protein p21(ras)/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/metabolism , Allosteric Regulation/drug effects , Azetidines/pharmacology , Cell Survival/drug effects , Clinical Trials as Topic , Crystallography, X-Ray , Enzyme Activation/drug effects , Feedback, Physiological/drug effects , HCT116 Cells , Humans , Imidazoles/pharmacology , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/chemistry , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Molecular , Neoplasms/pathology , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Phosphorylation/drug effects , Phosphoserine/metabolism , Piperidines/pharmacology , Proto-Oncogene Proteins B-raf/genetics
11.
Nat Chem Biol ; 9(9): 548-56, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23892893

ABSTRACT

VCP (also known as p97 or Cdc48p in yeast) is an AAA(+) ATPase regulating endoplasmic reticulum-associated degradation. After high-throughput screening, we developed compounds that inhibit VCP via different mechanisms, including covalent modification of an active site cysteine and a new allosteric mechanism. Using photoaffinity labeling, structural analysis and mutagenesis, we mapped the binding site of allosteric inhibitors to a region spanning the D1 and D2 domains of adjacent protomers encompassing elements important for nucleotide-state sensing and ATP hydrolysis. These compounds induced an increased affinity for nucleotides. Interference with nucleotide turnover in individual subunits and distortion of interprotomer communication cooperated to impair VCP enzymatic activity. Chemical expansion of this allosteric class identified NMS-873, the most potent and specific VCP inhibitor described to date, which activated the unfolded protein response, interfered with autophagy and induced cancer cell death. The consistent pattern of cancer cell killing by covalent and allosteric inhibitors provided critical validation of VCP as a cancer target.


Subject(s)
Acetanilides/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Acetanilides/chemistry , Adenosine Triphosphatases/metabolism , Allosteric Regulation/drug effects , Antineoplastic Agents/chemistry , Benzothiazoles/chemistry , Cell Cycle Proteins/metabolism , Cell Death/drug effects , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Neoplasms/metabolism , Structure-Activity Relationship , Valosin Containing Protein
12.
Nucleus ; 3(1): 88-100, 2012.
Article in English | MEDLINE | ID: mdl-22567193

ABSTRACT

Neoplastic cells are often characterized by specific morphological abnormalities of the nuclear envelope (NE), which have been used for cancer diagnosis for more than a century. The NE is a double phospholipid bilayer that encapsulates the nuclear genome, regulates all nuclear trafficking of RNAs and proteins and prevents the passive diffusion of macromolecules between the nucleoplasm and the cytoplasm. Whether there is a consequence to the proper functioning of the cell and loss of structural integrity of the nucleus remains unclear. Using live cell imaging, we characterize a phenomenon wherein nuclei of several proliferating human cancer cell lines become temporarily ruptured during interphase. Strikingly, NE rupturing was associated with the mislocalization of nucleoplasmic and cytoplasmic proteins and, in the most extreme cases, the entrapment of cytoplasmic organelles in the nuclear interior. In addition, we observed the formation of micronuclei-like structures during interphase and the movement of chromatin out of the nuclear space. The frequency of these NE rupturing events was higher in cells in which the nuclear lamina, a network of intermediate filaments providing mechanical support to the NE, was not properly formed. Our data uncover the existence of a NE instability that has the potential to change the genomic landscape of cancer cells.


Subject(s)
Interphase , Neoplasms/pathology , Nuclear Envelope/metabolism , Active Transport, Cell Nucleus , Cell Line, Tumor , Cell Proliferation , Cytoplasm/metabolism , Gene Knockdown Techniques , Genomic Instability , Humans , Lamins/deficiency , Lamins/genetics , Lamins/metabolism , Neoplasms/metabolism , Nuclear Localization Signals/metabolism , Permeability , Signal Transduction , Time Factors
13.
Blood ; 119(24): 5807-16, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22538851

ABSTRACT

The BH3-mimetic ABT-737 and an orally bioavailable compound of the same class, navitoclax (ABT-263), have shown promising antitumor efficacy in preclinical and early clinical studies. Although both drugs avidly bind Bcl-2, Bcl-x(L), and Bcl-w in vitro, we find that Bcl-2 is the critical target in vivo, suggesting that patients with tumors overexpressing Bcl-2 will probably benefit. In human non-Hodgkin lymphomas, high expression of Bcl-2 but not Bcl-x(L) predicted sensitivity to ABT-263. Moreover, we show that increasing Bcl-2 sensitized normal and transformed lymphoid cells to ABT-737 by elevating proapoptotic Bim. In striking contrast, increasing Bcl-x(L) or Bcl-w conferred robust resistance to ABT-737, despite also increasing Bim. Cell-based protein redistribution assays unexpectedly revealed that ABT-737 disrupts Bcl-2/Bim complexes more readily than Bcl-x(L)/Bim or Bcl-w/Bim complexes. These results have profound implications for how BH3-mimetics induce apoptosis and how the use of these compounds can be optimized for treating lymphoid malignancies.


Subject(s)
Aniline Compounds/pharmacology , Apoptosis Regulatory Proteins/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Leukemia/drug therapy , Lymphoma/drug therapy , Molecular Targeted Therapy , Nitrophenols/pharmacology , Sulfonamides/pharmacology , bcl-X Protein/antagonists & inhibitors , Aniline Compounds/therapeutic use , Animals , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Biphenyl Compounds/therapeutic use , Cell Death/drug effects , Cytoprotection/drug effects , Drug Resistance, Neoplasm/drug effects , Etoposide/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia/genetics , Leukemia/pathology , Lymphoma/genetics , Lymphoma/pathology , Membrane Proteins/metabolism , Mice , Mutant Proteins/metabolism , Myeloid Cell Leukemia Sequence 1 Protein , Nitrophenols/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Protein Binding/drug effects , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/therapeutic use , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
14.
Proc Natl Acad Sci U S A ; 109(14): 5299-304, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22431598

ABSTRACT

The Ras gene is frequently mutated in cancer, and mutant Ras drives tumorigenesis. Although Ras is a central oncogene, small molecules that bind to Ras in a well-defined manner and exert inhibitory effects have not been uncovered to date. Through an NMR-based fragment screen, we identified a group of small molecules that all bind to a common site on Ras. High-resolution cocrystal structures delineated a unique ligand-binding pocket on the Ras protein that is adjacent to the switch I/II regions and can be expanded upon compound binding. Structure analysis predicts that compound-binding interferes with the Ras/SOS interactions. Indeed, selected compounds inhibit SOS-mediated nucleotide exchange and prevent Ras activation by blocking the formation of intermediates of the exchange reaction. The discovery of a small-molecule binding pocket on Ras with functional significance provides a new direction in the search of therapeutically effective inhibitors of the Ras oncoprotein.


Subject(s)
Nucleotides/metabolism , Son of Sevenless Proteins/metabolism , ras Proteins/metabolism , Binding Sites , Cell Line , Humans , Ligands , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , ras Proteins/chemistry
15.
PLoS One ; 6(8): e22607, 2011.
Article in English | MEDLINE | ID: mdl-21829637

ABSTRACT

Oncogenic mutations in the mitogen activated protein kinase (MAPK) pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2). We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.


Subject(s)
MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , Cell Line , Humans , MAP Kinase Signaling System/genetics , Mutation
16.
Nature ; 471(7336): 110-4, 2011 Mar 03.
Article in English | MEDLINE | ID: mdl-21368834

ABSTRACT

Microtubules have pivotal roles in fundamental cellular processes and are targets of antitubulin chemotherapeutics. Microtubule-targeted agents such as Taxol and vincristine are prescribed widely for various malignancies, including ovarian and breast adenocarcinomas, non-small-cell lung cancer, leukaemias and lymphomas. These agents arrest cells in mitosis and subsequently induce cell death through poorly defined mechanisms. The strategies that resistant tumour cells use to evade death induced by antitubulin agents are also unclear. Here we show that the pro-survival protein MCL1 (ref. 3) is a crucial regulator of apoptosis triggered by antitubulin chemotherapeutics. During mitotic arrest, MCL1 protein levels decline markedly, through a post-translational mechanism, potentiating cell death. Phosphorylation of MCL1 directs its interaction with the tumour-suppressor protein FBW7, which is the substrate-binding component of a ubiquitin ligase complex. The polyubiquitylation of MCL1 then targets it for proteasomal degradation. The degradation of MCL1 was blocked in patient-derived tumour cells that lacked FBW7 or had loss-of-function mutations in FBW7, conferring resistance to antitubulin agents and promoting chemotherapeutic-induced polyploidy. Additionally, primary tumour samples were enriched for FBW7 inactivation and elevated MCL1 levels, underscoring the prominent roles of these proteins in oncogenesis. Our findings suggest that profiling the FBW7 and MCL1 status of tumours, in terms of protein levels, messenger RNA levels and genetic status, could be useful to predict the response of patients to antitubulin chemotherapeutics.


Subject(s)
Cell Cycle Proteins/metabolism , F-Box Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Tubulin Modulators/pharmacology , Tubulin/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis/drug effects , Cell Cycle Proteins/genetics , Cell Line , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Drug Resistance, Neoplasm , F-Box Proteins/genetics , F-Box-WD Repeat-Containing Protein 7 , Fibroblasts , Humans , Mice , Mitosis/drug effects , Myeloid Cell Leukemia Sequence 1 Protein , Paclitaxel/pharmacology , Pharmacogenetics , Phosphorylation/drug effects , Polyploidy , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Proto-Oncogene Proteins c-bcl-2/deficiency , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Vincristine/pharmacology
17.
Nature ; 464(7287): 431-5, 2010 Mar 18.
Article in English | MEDLINE | ID: mdl-20130576

ABSTRACT

Activating mutations in KRAS and BRAF are found in more than 30% of all human tumours and 40% of melanoma, respectively, thus targeting this pathway could have broad therapeutic effects. Small molecule ATP-competitive RAF kinase inhibitors have potent antitumour effects on mutant BRAF(V600E) tumours but, in contrast to mitogen-activated protein kinase kinase (MEK) inhibitors, are not potent against RAS mutant tumour models, despite RAF functioning as a key effector downstream of RAS and upstream of MEK. Here we show that ATP-competitive RAF inhibitors have two opposing mechanisms of action depending on the cellular context. In BRAF(V600E) tumours, RAF inhibitors effectively block the mitogen-activated protein kinase (MAPK) signalling pathway and decrease tumour growth. Notably, in KRAS mutant and RAS/RAF wild-type tumours, RAF inhibitors activate the RAF-MEK-ERK pathway in a RAS-dependent manner, thus enhancing tumour growth in some xenograft models. Inhibitor binding activates wild-type RAF isoforms by inducing dimerization, membrane localization and interaction with RAS-GTP. These events occur independently of kinase inhibition and are, instead, linked to direct conformational effects of inhibitors on the RAF kinase domain. On the basis of these findings, we demonstrate that ATP-competitive kinase inhibitors can have opposing functions as inhibitors or activators of signalling pathways, depending on the cellular context. Furthermore, this work provides new insights into the therapeutic use of ATP-competitive RAF inhibitors.


Subject(s)
MAP Kinase Signaling System/drug effects , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , raf Kinases/antagonists & inhibitors , raf Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Benzamides/pharmacology , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Proliferation/drug effects , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Indenes/pharmacology , Indoles/pharmacology , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/metabolism , Protein Kinase Inhibitors/therapeutic use , Protein Multimerization , Protein Structure, Tertiary , Protein Transport/drug effects , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-raf/deficiency , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins p21(ras) , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays , raf Kinases/chemistry , raf Kinases/genetics , ras Proteins/genetics , ras Proteins/metabolism
18.
J Cell Biol ; 186(2): 183-91, 2009 Jul 27.
Article in English | MEDLINE | ID: mdl-19620630

ABSTRACT

Formation of the nuclear envelope (NE) around segregated chromosomes occurs by the reshaping of the endoplasmic reticulum (ER), a reservoir for disassembled nuclear membrane components during mitosis. In this study, we show that inner nuclear membrane proteins such as lamin B receptor (LBR), MAN1, Lap2beta, and the trans-membrane nucleoporins Ndc1 and POM121 drive the spreading of ER membranes into the emerging NE via their capacity to bind chromatin in a collaborative manner. Despite their redundant functions, decreasing the levels of any of these trans-membrane proteins by RNAi-mediated knockdown delayed NE formation, whereas increasing the levels of any of them had the opposite effect. Furthermore, acceleration of NE formation interferes with chromosome separation during mitosis, indicating that the time frame over which chromatin becomes membrane enclosed is physiologically relevant and regulated. These data suggest that functionally distinct classes of chromatin-interacting membrane proteins, which are present at nonsaturating levels, collaborate to rapidly reestablish the nuclear compartment at the end of mitosis.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins/metabolism , Nuclear Envelope/chemistry , Nuclear Envelope/metabolism , Cell Line , Chromosome Segregation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Mitosis/physiology , Nuclear Envelope/ultrastructure , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Lamin B Receptor
19.
J Cell Biol ; 182(5): 911-24, 2008 Sep 08.
Article in English | MEDLINE | ID: mdl-18779370

ABSTRACT

During mitosis in metazoans, segregated chromosomes become enclosed by the nuclear envelope (NE), a double membrane that is continuous with the endoplasmic reticulum (ER). Recent in vitro data suggest that NE formation occurs by chromatin-mediated reorganization of the tubular ER; however, the basic principles of such a membrane-reshaping process remain uncharacterized. Here, we present a quantitative analysis of nuclear membrane assembly in mammalian cells using time-lapse microscopy. From the initial recruitment of ER tubules to chromatin, the formation of a membrane-enclosed, transport-competent nucleus occurs within approximately 12 min. Overexpression of the ER tubule-forming proteins reticulon 3, reticulon 4, and DP1 inhibits NE formation and nuclear expansion, whereas their knockdown accelerates nuclear assembly. This suggests that the transition from membrane tubules to sheets is rate-limiting for nuclear assembly. Our results provide evidence that ER-shaping proteins are directly involved in the reconstruction of the nuclear compartment and that morphological restructuring of the ER is the principal mechanism of NE formation in vivo.


Subject(s)
Endoplasmic Reticulum/metabolism , Nuclear Envelope/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Chromatin/metabolism , Chromatin/ultrastructure , Endoplasmic Reticulum/ultrastructure , Green Fluorescent Proteins/analysis , Humans , Kinetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Myelin Proteins/genetics , Myelin Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nogo Proteins , Nuclear Envelope/ultrastructure , Recombinant Fusion Proteins/analysis , Transcription Factor DP1/genetics , Transcription Factor DP1/metabolism
20.
Curr Opin Cell Biol ; 20(4): 386-92, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18495454

ABSTRACT

The nuclear envelope is a double-layered membrane that encloses the nuclear genome and transcriptional machinery. In dividing cells of metazoa, the nucleus completely disassembles during mitosis, creating the need to re-establish the nuclear compartment at the end of each cell division. Given the crucial role of the nuclear envelope in gene regulation and cellular organization, it is not surprising that its biogenesis and organization have become active research areas. We will review recent insights into nuclear membrane dynamics during the cell cycle.


Subject(s)
Life Cycle Stages/physiology , Nuclear Envelope/physiology , Vertebrates/physiology , Animals , Cell Cycle/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...