Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Wildl Dis ; 48(4): 1092-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23060516

ABSTRACT

Cyprinid herpesvirus 3 (CyHV3) is a viral disease of fish first detected in the United States in 1998. Since that time, mortality events in common carp (Cyprinus carpio carpio) have occurred in several locations within the Great Lakes basin, but not within the Great Lakes themselves. We sampled 675 carp from 20 sites across the Great Lakes and Lake St. Clair, Michigan, USA, between 19 July and 26 September 2010. We tested the gill and a pooled internal organ sample from each fish for CyHV3 with the use of a quantitative polymerase chain reaction (qPCR) assay. Virus was detected in 18 fish from nine sites in four lakes (Lakes Michigan, Huron, St. Clair, and Ontario). Tissues from these 18 fish were also tested for CyHV3 with the use of the PCR assay recommended by the World Organization for Animal Health; amplification was achieved from two fish and confirmation by sequencing of CyHV3 from one fish collected in Lake St. Clair. The results of this study suggest that CyHV3 is present in the Great Lakes.


Subject(s)
Carps/virology , Fish Diseases/epidemiology , Herpesviridae Infections/veterinary , Animals , Fish Diseases/virology , Great Lakes Region/epidemiology , Herpesviridae/isolation & purification , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Polymerase Chain Reaction/veterinary , Prevalence , Sentinel Surveillance/veterinary , Water Microbiology
2.
Environ Manage ; 50(3): 462-77, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22744156

ABSTRACT

Assessing the passage of aquatic organisms through culvert road crossings has become increasingly common in efforts to restore stream habitat. Several federal and state agencies and local stakeholders have adopted assessment approaches based on literature-derived criteria for culvert impassability. However, criteria differ and are typically specific to larger-bodied fishes. In an analysis to prioritize culverts for remediation to benefit imperiled, small-bodied fishes in the Upper Coosa River system in the southeastern United States, we assessed the sensitivity of prioritization to the use of differing but plausible criteria for culvert impassability. Using measurements at 256 road crossings, we assessed culvert impassability using four alternative criteria sets represented in Bayesian belief networks. Two criteria sets scored culverts as either passable or impassable based on alternative thresholds of culvert characteristics (outlet elevation, baseflow water velocity). Two additional criteria sets incorporated uncertainty concerning ability of small-bodied fishes to pass through culverts and estimated a probability of culvert impassability. To prioritize culverts for remediation, we combined estimated culvert impassability with culvert position in the stream network relative to other barriers to compute prospective gain in connected stream habitat for the target fish species. Although four culverts ranked highly for remediation regardless of which criteria were used to assess impassability, other culverts differed widely in priority depending on criteria. Our results emphasize the value of explicitly incorporating uncertainty into criteria underlying remediation decisions. Comparing outcomes among alternative, plausible criteria may also help to identify research most needed to narrow management uncertainty.


Subject(s)
Animal Migration , Conservation of Natural Resources , Equipment Design , Fishes , Animals , Body Size , Decision Making , Environment Design , Forecasting , Rivers , Southeastern United States , Uncertainty , Water Movements
3.
Proc Natl Acad Sci U S A ; 101(26): 9517-22, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15210951

ABSTRACT

We report the fabrication of enthalpy arrays and their use to detect molecular interactions, including protein-ligand binding, enzymatic turnover, and mitochondrial respiration. Enthalpy arrays provide a universal assay methodology with no need for specific assay development such as fluorescent labeling or immobilization of reagents, which can adversely affect the interaction. Microscale technology enables the fabrication of 96-detector enthalpy arrays on large substrates. The reduction in scale results in large decreases in both the sample quantity and the measurement time compared with conventional microcalorimetry. We demonstrate the utility of the enthalpy arrays by showing measurements for two protein-ligand binding interactions (RNase A + cytidine 2'-monophosphate and streptavidin + biotin), phosphorylation of glucose by hexokinase, and respiration of mitochondria in the presence of 2,4-dinitrophenol uncoupler.


Subject(s)
Biotin/metabolism , Cytidine Monophosphate/metabolism , Protein Array Analysis/methods , Ribonuclease, Pancreatic/metabolism , Streptavidin/metabolism , 2,4-Dinitrophenol/pharmacology , Animals , Biotin/chemistry , Cattle , Cell Respiration/drug effects , Cytidine Monophosphate/chemistry , Equipment Design , Glucose/metabolism , Hexokinase/metabolism , Ligands , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Phosphorylation , Protein Array Analysis/instrumentation , Protein Binding , Ribonuclease, Pancreatic/chemistry , Streptavidin/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...