Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.290
Filter
2.
G3 (Bethesda) ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001867

ABSTRACT

Intermediate wheatgrass (IWG) is a perennial grass that produces nutritious grain while offering substantial ecosystem services. Commercial varieties of this crop are mostly synthetic panmictic populations that are developed by intermating a few selected individuals. As development and generation advancement of these synthetic populations is a multi-year process, earlier synthetic generations are tested by the breeders and subsequent generations are released to the growers. A comparison of generations within IWG synthetic cultivars is currently lacking. In this study, we used simulation models and genomic prediction to analyze population differences and trends of genetic variance in four synthetic generations of MN-Clearwater, a commercial cultivar released by the University of Minnesota. Little to no differences were observed among the four generations for population genetic, genetic kinship, and genome-wide marker relationships measured via linkage disequilibrium. A reduction in genetic variance was observed when 7 parents were used to generate synthetic populations while using 20 led to the best possible outcome in determining population variance. Genomic prediction of plant height, free threshing ability, seed mass, and grain yield among the four synthetic generations showed a few significant differences among the generations yet the difference in values were negligible. Based on these observations, we make two major conclusions: 1) The earlier and latter synthetic generations of IWG are mostly similar to each other with minimal differences; and 2) Using 20 genotypes to create synthetic populations is recommended to sustain ample genetic variance and trait expression among all synthetic generations.

3.
Article in English | MEDLINE | ID: mdl-38950282

ABSTRACT

Despite significant efforts in the development of noninvasive blood glucose (BG) monitoring solutions, delivering an accurate, real-time BG measurement remains challenging. We sought to address this by using a novel radiofrequency (RF) glucose sensor to noninvasively classify glycemic status. The study included 31 participants aged 18-65 with prediabetes or type 2 diabetes and no other significant medical history. During control sessions and oral glucose tolerance test sessions, data were collected from both a RF sensor that rapidly scans thousands of frequencies and concurrently from a venous blood draw measured with an US Food and Drug Administration (FDA)-cleared glucose hospital meter system to create paired observations. We trained a time series forest machine learning model on 80% of the paired observations and reported results from applying the model to the remaining 20%. Our findings show that the model correctly classified glycemic status 93.37% of the time as high, normal, or low.

4.
Environ Sci Technol ; 58(28): 12297-12303, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38968232

ABSTRACT

The ongoing transition toward electric vehicles (EVs) is changing materials used for vehicle production, of which the consequences for the environmental performance of EVs are not well understood and managed. We demonstrate that electrification coupled with lightweighting of automobiles will lead to significant changes in the industry's demand not only for battery materials but also for other materials used throughout the entire vehicle. Given the automotive industry's substantial consumption of raw materials, changes in its material demands are expected to trigger volatilities in material prices, consequently impacting the material composition and attractiveness of EVs. In addition, the materials recovered during end-of-life recycling of EVs as the vehicle fleet turns over will impact recycled material supplies both positively and negatively, impacting material availabilities and the economic incentive to engage in recycling. These supply chain impacts will influence material usage and the associated environmental performance of not only the automotive sector but also other metal-heavy industries such as construction. In light of these challenges, we propose the need for new research to understand the dynamic materials impacts of the EV transition that encompasses its implications on EV adoption and fleet life cycle environmental performance. Effectively coordinating the coevolution of material supply chains is crucial for making the sustainable transition to EVs a reality.


Subject(s)
Automobiles , Recycling , Electricity
5.
J Hazard Mater ; 476: 135223, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39029183

ABSTRACT

Irreversible adsorption, or heel buildup, negatively impacts activated carbon performance and shortens its lifetime. This study elucidates the interconnections between flow rate and the oxygen impurity of desorption purge gas with heel buildup on beaded activated carbon (BAC). Nine thermal desorption scenarios were explored, varying nitrogen purge gas oxygen impurity levels (<5 ppmv, 10,000 ppmv, 210,000 ppm (21 %)) and flow rates (0.1, 1, 10 SLPM or 1 %, 10 %, 100 % of adsorption flow rate) during thermal desorption. Results reveal that increasing purge gas flow rate improves adsorption capacity recovery and mitigates adverse effects of purge gas oxygen impurity. Cumulative heel increased with higher purge gas oxygen impurity and lower flow rates. In the least effective regeneration scenario (0.1 SLPM N2, 21 % O2), a 32.8 wt% cumulative heel formed on BAC after five cycles, while the best-case scenario (10 SLPM N2, <5 ppmv O2) resulted in only 0.3 wt%. Comparing the pore size distributions of virgin and used BAC shows that heel initially forms in narrow micropores (<8.5Å) and later engages mesopores. Thermogravimetric analysis (TGA) showed that oxygen impurity creates high boiling point and/or strongly bound heel species. TGA confirmed that higher purge gas flow rates reduce heel amounts but encourage chemisorbed heel formation in oxygen's presence. These findings can guide optimization of regeneration conditions, enhancing activated carbon's long-term performance in cyclic adsorption processes.

6.
Appl Opt ; 63(13): 3685-3694, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38856555

ABSTRACT

Atomic emission spectra provide a means to identify and to gain insight into the electronic structure of emitting or absorbing matter. Detailed procedures are provided for the construction of low-pressure electrodeless discharge lamps that yield targeted emission in the vacuum ultraviolet for the spectroscopic study of water vapor and halogen species aboard an array of airborne observation platforms in the upper atmosphere, as well as in laboratory environments. While specific to the production of Lyman-alpha, atomic chlorine, and atomic bromine emissions in this study, the configuration of the lamps and their interchangeability with respect to operation lend these procedures to constructing sources engaging a wide selection of atomic and molecular spectra with straightforward modifications. The features and limitations of each type of lamp are discussed, as well as methods to improve spectral purity and factors affecting operational lifetime.

7.
Anaesth Intensive Care ; : 310057X241242813, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879796

ABSTRACT

The regional and rural intensivist workforce is vital to delivering high standards of healthcare to all Australians. Currently, there is an impending workforce disaster, with higher senior medical officer vacancy rates among regional and rural intensive care units, with these units being staffed by junior doctors who are in earlier stages of their training, which in turn increases supervisory burden. There is a lack of comprehensive literature on the barriers and enablers of training, recruiting and retaining regional and rural intensivists. To address this gap, a qualitative study was conducted, involving 13 in-depth, structured interviews with full-time and part-time intensivists from eight Australian regional and rural hospitals. Content analysis of the interview data resulted in the identification of four major categories: unique practice context, need for a broad generalist skill set, perks and challenges of working in a regional/rural area and workforce implications. The study findings revealed that regional and rural intensive care practice offers positive aspects, including work satisfaction, supportive local teams and an appealing lifestyle. However, these benefits are counterbalanced by challenges such as a heavier burden of on-call work, a higher proportion of junior staff which increase supervisory burden and limited access to subspecialist services. The implications of these findings are noteworthy and can be utilised to inform government policies, hospitals, the College of Intensive Care Medicine and the Australian and New Zealand College of Anaesthetists in developing strategies to enhance the provision of intensive care services and improve workforce planning in regional and rural areas.

8.
Nat Commun ; 15(1): 5274, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902254

ABSTRACT

Aquaculture is a rapidly growing food production technology, but there are significant concerns related to its environmental impact and adverse social effects. We examine aquaculture outcomes in a three pillars of sustainability framework by analyzing data collected using the Aquaculture Performance Indicators. Using this approach, comparable data has been collected for 57 aquaculture systems worldwide on 88 metrics that measure social, economic, or environmental outcomes. We first examine the relationships among the three pillars of sustainability and then analyze performance in the three pillars by technology and species. The results show that economic, social, and environmental outcomes are, on average, mutually reinforced in global aquaculture systems. However, the analysis also shows significant variation in the degree of sustainability in different aquaculture systems, and weak performance of some production systems in some dimensions provides opportunity for innovative policy measures and investment to further align sustainability objectives.


Subject(s)
Aquaculture , Conservation of Natural Resources , Aquaculture/economics , Aquaculture/methods , Conservation of Natural Resources/methods , Conservation of Natural Resources/economics , Humans , Environment , Animals , Sustainable Development/economics , Fisheries/economics
10.
J Wildl Dis ; 60(3): 615-620, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38755118

ABSTRACT

Wood Ducks (Aix sponsa) are secondary cavity nesters that use natural cavities and artificial nest boxes, the latter of which has been attributed to the recovery of populations across the southeastern US. Continual use of these boxes results in a buildup of bacteria, parasites, and other pathogens. To avoid the accumulation of these deleterious organisms, best management practices include the occasional removal of old nesting material (i.e., wood shavings) and replacement with fresh wood shavings. No studies have been performed on the effects of shaving material on nest box selection, nest success, and bacterial growth. We monitored 142 and 111 nest boxes in Florida and Georgia, USA, respectively, and filled a random sample with aspen or cedar shavings. We then swabbed the surface of 144 and 150 eggs during 2020 and 2021, respectively, to screen for culturable bacteria. We detected no effect of shaving type on nest box selection, nest success, or egg surface bacterial growth. We found 3-8 bacterial colony types (1-123 colony-forming units [CFU]/box) and 1-8 bacterial colony types (3-382 CFU/box) among the Georgia and Florida samples, respectively. We detected no effect from shaving type on Wood Duck reproduction or bacterial growth in the sampled nest boxes. We concluded that both shaving types are suitable nesting materials for box-nesting Wood Duck populations and the continued use of either would be a reasonable decision for managers.


Subject(s)
Ducks , Nesting Behavior , Reproduction , Animals , Ducks/microbiology , Reproduction/physiology , Bacteria/isolation & purification , Egg Shell/microbiology , Florida , Georgia , Wood/microbiology , Female
11.
Int Rev Psychiatry ; 36(1-2): 153-164, 2024.
Article in English | MEDLINE | ID: mdl-38557346

ABSTRACT

This article promotes and advocates for the integration of psychobiography into academic training in psychology. While psychobiography has been foundational to the discipline of psychology since Freud's study of Leonardo da Vinci, its procedures and methods have been sorely neglected in academic psychology. Following a brief introduction to psychobiography, the authors provide a historical review of the specialty area, review the current scope of psychobiographical training in psychology, and summarize the benefits of psychobiography to both the training of students and the broader psychology field. Next, models and examples of psychobiography integration across three continents and five countries are provided. The article concludes with specific recommendations for advancing psychobiography in academic psychology.

12.
Bull Volcanol ; 86(5): 45, 2024.
Article in English | MEDLINE | ID: mdl-38617076

ABSTRACT

Volcanic islands are often subject to flank instability, resulting from a combination of magmatic intrusions along rift zones and gravitational spreading causing extensional faulting at the surface. Here, we study the Koa'e fault system (KFS), located south of the summit caldera of Kilauea volcano in Hawai'i, one of the most active volcanoes on Earth, prone to active faulting, episodic dike intrusions, and flank instability. Two rift zones and the KFS are major structures controlling volcanic flank instability and magma propagation. Although several magmatic intrusions occurred over the KFS, the link between these faults, two nearby rift zones and the flank instability, is still poorly studied. To better characterize the KFS and its structural linkage with the surrounding fault and rift zones, we performed a detailed structural analysis of the extensional fault system, coupled with a helicopter photogrammetric survey, covering part of the south flank of Kilauea. We generated a high-resolution DEM (~ 8 cm) and orthomosaic (~ 4 cm) to map the fracture field in detail. We also collected ~ 1000 ground structural measurements of extensional fractures during our three field missions (2019, 2022, and 2023). We observed many small, interconnected grabens, monoclines, rollover structures, and en-echelon fractures that were in part previously undocumented. We estimate the cumulative displacement rate across the KFS during the last 600 ~ 700 years and found a decrease toward the west of the horizontal component from 2 to 6 cm per year, consistent with GNSS data. Integrating morphology observations, fault mapping, and kinematic measurements, we propose a new kinematic model of the upper part of the Kilauea's south flank, suggesting a clockwise rotation and a translation of a triangular wedge. This wedge is bordered by the extensional structures (ERZ, SWRZ, and the KFS), largely influenced by gravitational spreading. These findings illustrate a structural linkage between the two rift zones and the KFS, the latter being episodically affected by dike intrusions. Supplementary Information: The online version contains supplementary material available at 10.1007/s00445-024-01735-7.

13.
Nat Commun ; 15(1): 3110, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600112

ABSTRACT

Homeodomains (HDs) are the second largest class of DNA binding domains (DBDs) among eukaryotic sequence-specific transcription factors (TFs) and are the TF structural class with the largest number of disease-associated mutations in the Human Gene Mutation Database (HGMD). Despite numerous structural studies and large-scale analyses of HD DNA binding specificity, HD-DNA recognition is still not fully understood. Here, we analyze 92 human HD mutants, including disease-associated variants and variants of uncertain significance (VUS), for their effects on DNA binding activity. Many of the variants alter DNA binding affinity and/or specificity. Detailed biochemical analysis and structural modeling identifies 14 previously unknown specificity-determining positions, 5 of which do not contact DNA. The same missense substitution at analogous positions within different HDs often exhibits different effects on DNA binding activity. Variant effect prediction tools perform moderately well in distinguishing variants with altered DNA binding affinity, but poorly in identifying those with altered binding specificity. Our results highlight the need for biochemical assays of TF coding variants and prioritize dozens of variants for further investigations into their pathogenicity and the development of clinical diagnostics and precision therapies.


Subject(s)
Homeodomain Proteins , Transcription Factors , Humans , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , DNA/metabolism , Mutation , Models, Molecular
14.
Front Plant Sci ; 15: 1343148, 2024.
Article in English | MEDLINE | ID: mdl-38516672

ABSTRACT

Wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) threatens wheat production worldwide. The objective of this study was to characterize wheat stem rust resistance in 'Linkert', a variety with adult plant resistance effective to emerging wheat stem rust pathogen strain Ug99. Two doubled haploid (DH) populations and one recombinant inbred line (RIL) population were developed with 'Linkert' as a stem rust resistant parent. Hard red spring wheat variety 'Forefront' and genetic stock 'LMPG' were used as stem rust susceptible parents of the DH populations. Breeding line 'MN07098-6' was used as a susceptible parent of the RIL population. Both DH and RIL populations with their parents were evaluated both at the seedling stage and in the field against Pgt races. Genotyping data of the DH populations were generated using the wheat iSelect 90k SNP assay. The RIL population was genotyped by genotyping-by-sequencing. We found QTL consistently associated with wheat stem rust resistance on chromosome 2BS for the Linkert/Forefront DH population and the Linkert/MN07098-6 RIL population both in Ethiopia and Kenya. Additional reliable QTL were detected on chromosomes 5BL (125.91 cM) and 4AL (Sr7a) for the Linkert/LMPG population in Ethiopia and Kenya. Different QTL identified in the populations reflect the importance of examining the genetics of resistance in populations derived from adapted germplasm (Forefront and MN07098-6) in addition to a genetic stock (LMPG). The associated markers in this study could be used to track and select for the identified QTL in wheat breeding programs.

15.
Environ Pollut ; 348: 123869, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548150

ABSTRACT

The Chinese central government has initiated pilot projects to promote the adoption of gasoline containing 10%v ethanol (E10). Vehicle emissions using ethanol blended fuels require investigation to estimate the environmental impacts of the initiative. Five fuel formulations were created using two blending methods (splash blending and match blending) to evaluate the impacts of formulations on speciated volatile organic compounds (VOCs) from exhaust emissions. Seven in-use vehicles covering China 4 to China 6 emission standards were recruited. Vehicle tests were conducted using the Worldwide Harmonized Test Cycle (WLTC) in a temperature-controlled chamber at 23 °C and -7 °C. Splash blended E10 fuels led to significant reductions in VOC emissions by 12%-75%. E10 fuels had a better performance of reducing VOC emissions in older model vehicles than in newer model vehicles. These results suggested that E10 fuel could be an option to mitigate the VOC emissions. Although replacing methyl tert-butyl ether (MTBE) with ethanol in regular gasoline had no significant effects on VOC emissions, the replacement led to lower aromatic emissions by 40%-60%. Alkanes and aromatics dominated approximately 90% of VOC emissions for all vehicle-fuel combinations. Cold temperature increased VOC emissions significantly, by 3-26 folds for all vehicle/fuel combinations at -7 °C. Aromatic emissions were increased by cold temperature, from 2 to 26 mg/km at 23 °C to 33-238 mg/km at -7 °C. OVOC emissions were not significantly affected by E10 fuel or cold temperature. The ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of splash blended E10 fuels decreased by up to 76% and 81%, respectively, compared with those of E0 fuels. The results are useful to update VOC emission profiles of Chinese vehicles using ethanol blended gasoline and under low-temperature conditions.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Gasoline/analysis , Cold Temperature , Volatile Organic Compounds/analysis , Ethanol , Vehicle Emissions/analysis , China , Air Pollutants/analysis
17.
J Comput Chem ; 45(14): 1152-1159, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38299704

ABSTRACT

The reactivity of 22 unsaturated molecules undergoing attack by a methyl radical (⋅CH3) have been elucidated using the condensed radical general-purpose reactivity indicator (condensed radical GPRI) appropriate for relatively nucleophilic or electrophilic molecules. Using the appropriate radical GPRI equation for electrophilic attack or nucleophilic radical attack, seven different population schemes were used to assign the most reactive atoms in each of the 22 molecules. The results show that the condensed radical GPRI is sensitive to the population scheme chosen, but less sensitive than the radical Fukui function. Therefore, the reliability of these methods depends on the population scheme. Our investigation indicates that the condensed radical GPRI is most accurate in predicting the dominant products of the methyl radical addition reactions on a variety of unsaturated molecules when the Hirshfeld, Merz-Singh-Kollman, or Voronoi deformation density population schemes are used. Furthermore, for all populations schemes in the majority of instances where the radical Fukui function failed the radical GPRI was able to identify the most reactive atom under certain reactivity conditions.

18.
Sci Rep ; 14(1): 3196, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38326469

ABSTRACT

Breeding programs require exhaustive phenotyping of germplasms, which is time-demanding and expensive. Genomic prediction helps breeders harness the diversity of any collection to bypass phenotyping. Here, we examined the genomic prediction's potential for seed yield and nine agronomic traits using 26,171 single nucleotide polymorphism (SNP) markers in a set of 337 flax (Linum usitatissimum L.) germplasm, phenotyped in five environments. We evaluated 14 prediction models and several factors affecting predictive ability based on cross-validation schemes. Models yielded significant variation among predictive ability values across traits for the whole marker set. The ridge regression (RR) model covering additive gene action yielded better predictive ability for most of the traits, whereas it was higher for low heritable traits by models capturing epistatic gene action. Marker subsets based on linkage disequilibrium decay distance gave significantly higher predictive abilities to the whole marker set, but for randomly selected markers, it reached a plateau above 3000 markers. Markers having significant association with traits improved predictive abilities compared to the whole marker set when marker selection was made on the whole population instead of the training set indicating a clear overfitting. The correction for population structure did not increase predictive abilities compared to the whole collection. However, stratified sampling by picking representative genotypes from each cluster improved predictive abilities. The indirect predictive ability for a trait was proportionate to its correlation with other traits. These results will help breeders to select the best models, optimum marker set, and suitable genotype set to perform an indirect selection for quantitative traits in this diverse flax germplasm collection.


Subject(s)
Flax , Flax/genetics , Plant Breeding , Phenotype , Linkage Disequilibrium , Genomics/methods , Genotype , Polymorphism, Single Nucleotide
19.
Environ Sci Technol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323898

ABSTRACT

The U.S. EPA MOVES3 model was used to assess the impact of the large-scale introduction of electric vehicles on emissions of criteria pollutants (CO, hydrocarbons [HC], NOx, and particulate matter [PM]) and CO2 from the U.S. light-duty vehicle fleet. Large reductions in emissions of these criteria pollutants occurred in 2000-2020. These trends are expected to continue through 2040 driven by turnover of the conventional fleet with old vehicles being replaced by battery electric vehicles (BEVs) and by new internal combustion engine vehicles (ICEVs) with modern emission control systems. Without the introduction of BEVs, the absolute emissions of CO, NOx, HC, and PM2.5 from the U.S. light-duty vehicle fleet are expected to decrease by approximately 61, 88, 55, and 20% from 2020 to 2040. Introduction of BEVs with market share increasing linearly to 100% in 2040 provides additional benefits, which, combined with ICEV fleet turnover, would lead to decreases of absolute emissions of CO, NOx, HC, and PM2.5 of approximately 77, 94, 71, and 37% from 2020 to 2040. Reductions in CO2 emissions follow a similar pattern. Large decreases in criteria pollutant and CO2 emissions from light duty vehicles lie ahead.

20.
Nat Med ; 30(2): 424-434, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38374343

ABSTRACT

Despite intensive preventive cardiovascular disease (CVD) efforts, substantial residual CVD risk remains even for individuals receiving all guideline-recommended interventions. Niacin is an essential micronutrient fortified in food staples, but its role in CVD is not well understood. In this study, untargeted metabolomics analysis of fasting plasma from stable cardiac patients in a prospective discovery cohort (n = 1,162 total, n = 422 females) suggested that niacin metabolism was associated with incident major adverse cardiovascular events (MACE). Serum levels of the terminal metabolites of excess niacin, N1-methyl-2-pyridone-5-carboxamide (2PY) and N1-methyl-4-pyridone-3-carboxamide (4PY), were associated with increased 3-year MACE risk in two validation cohorts (US n = 2,331 total, n = 774 females; European n = 832 total, n = 249 females) (adjusted hazard ratio (HR) (95% confidence interval) for 2PY: 1.64 (1.10-2.42) and 2.02 (1.29-3.18), respectively; for 4PY: 1.89 (1.26-2.84) and 1.99 (1.26-3.14), respectively). Phenome-wide association analysis of the genetic variant rs10496731, which was significantly associated with both 2PY and 4PY levels, revealed an association of this variant with levels of soluble vascular adhesion molecule 1 (sVCAM-1). Further meta-analysis confirmed association of rs10496731 with sVCAM-1 (n = 106,000 total, n = 53,075 females, P = 3.6 × 10-18). Moreover, sVCAM-1 levels were significantly correlated with both 2PY and 4PY in a validation cohort (n = 974 total, n = 333 females) (2PY: rho = 0.13, P = 7.7 × 10-5; 4PY: rho = 0.18, P = 1.1 × 10-8). Lastly, treatment with physiological levels of 4PY, but not its structural isomer 2PY, induced expression of VCAM-1 and leukocyte adherence to vascular endothelium in mice. Collectively, these results indicate that the terminal breakdown products of excess niacin, 2PY and 4PY, are both associated with residual CVD risk. They also suggest an inflammation-dependent mechanism underlying the clinical association between 4PY and MACE.


Subject(s)
Cardiovascular Diseases , Niacin , Female , Humans , Mice , Animals , Proportional Hazards Models , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...