Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 104(7): e4061, 2023 07.
Article in English | MEDLINE | ID: mdl-37395297

ABSTRACT

Climate-driven changes to phenology are some of the most prevalent climate change impacts, yet there is no commonly accepted approach to modeling phenological shifts. Here, we present a hierarchical modeling framework for estimating intra-annual patterns in phenology (e.g., peak phenological expression) and analyzing interannual rates of change in peak phenology. Our approach allows for the estimation of multiple sources of uncertainty, including observation error (e.g., imperfect observations of intra-annual patterns in phenology like peak flowering date) and variation in phenological processes (e.g., uncertainty in the rate of change in annual peak phenological expression). Covariates may be included as predictors of annual peaks or interannual variability in phenological responses. We demonstrate the use of our hierarchical modeling framework in two migratory species-juvenile chum salmon and Swainson's thrush. We acknowledge that the complexity of hierarchical models can be difficult to implement from scratch and present an R package that can be used to model peak dates and range (number of days between 25th- and 75th-quartile dates), as well as a rate of change in peak phenology. Increasing precision, calculating uncertainty, and allowing for imperfect data sets when estimating phenological shifts should help ecologists understand how organisms respond to climate change.


Subject(s)
Climate Change , Reproduction , Seasons , Time Factors , Temperature
2.
Nat Ecol Evol ; 7(6): 852-861, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37127767

ABSTRACT

Global climate change is shifting the timing of life-cycle events, sometimes resulting in phenological mismatches between predators and prey. Phenological shifts and subsequent mismatches may be consistent across populations, or they could vary unpredictably across populations within the same species. For anadromous Pacific salmon (Oncorhynchus spp.), juveniles from thousands of locally adapted populations migrate from diverse freshwater habitats to the Pacific Ocean every year. Both the timing of freshwater migration and ocean arrival, relative to nearshore prey (phenological match/mismatch), can control marine survival and population dynamics. Here we examined phenological change of 66 populations across six anadromous Pacific salmon species throughout their range in western North America with the longest time series spanning 1951-2019. We show that different salmon species have different rates of phenological change but that there was substantial within-species variation that was not correlated with changing environmental conditions or geographic patterns. Moreover, outmigration phenologies have not tracked shifts in the timing of marine primary productivity, potentially increasing the frequency of future phenological mismatches. Understanding population responses to mismatches with prey are an important part of characterizing overall population-specific climate vulnerability.


Subject(s)
Oncorhynchus , Animals , Salmon/physiology , Ecosystem , Population Dynamics , North America
3.
PLoS One ; 13(11): e0205127, 2018.
Article in English | MEDLINE | ID: mdl-30383778

ABSTRACT

While numerous studies have shown that floodplain habitat complexity can be important to fish ecology, few quantify how watershed-scale complexity influences productivity. This scale mismatch complicates population conservation and recovery strategies that evaluate recovery at regional or multi-basin scales. We used outputs from a habitat status and trends monitoring program for ten of Puget Sound's large river systems to examine whether juvenile Chinook salmon productivity relates to watershed-scale habitat complexity. We derived habitat complexity metrics that quantified wood jam densities, side and braid to main channel ratios, and node densities from a remote sensing census of Puget Sound's large river systems. Principal component analysis revealed that 91% of variance in these metrics could be explained by two principal components. These metrics revealed gradients in habitat complexity across Puget Sound which were sensitive to changes in complexity as a result of restoration actions in one watershed. Mixed effects models revealed that the second principle component term (PC2) describing habitat complexity was positively related to log transformed subyearling Chinook per spawner productivity rates from 6-18 cohorts per watershed. Total subyearling productivity (subyearlings per spawner) and fry productivity (subyearling fry per spawner) rates were best described by models that included a positive effect of habitat complexity (PC2) and negative relationships with log transformed peak flow recurrence interval, suggestive of reduced survival due to egg destruction during floods. Total subyearling productivity (subyearlings per spawner) and parr productivity (subyearling parr per spawner) rates were best described by models that included a positive effect of habitat complexity (PC2) and negative relationships with log transformed spawner density, suggestive of density dependent limits on juvenile rearing habitat. We also found that coefficient of variation for log transformed subyearling productivity and subyearling fry productivity rates declined with increasing habitat complexity, supporting the idea that habitat complexity buffers populations from annual variation in environmental conditions. Therefore, we conclude that our watershed-scale census-based approach provided habitat complexity metrics that explained some of the variability in productivity of subyearling juveniles among Chinook salmon populations. Furthermore, this approach may provide a useful means to track and evaluate aggregate effects of habitat changes on the productivity of Endangered Species Act (ESA) listed Chinook salmon populations over time.


Subject(s)
Endangered Species , Reproduction/physiology , Salmon/physiology , Animals , Ecosystem , Floods , Rivers
4.
Glob Chang Biol ; 21(7): 2500-2509, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25644185

ABSTRACT

Predicting effects of climate change on species and ecosystems depend on understanding responses to shifts in means (such as trends in global temperatures), but also shifts in climate variability. To evaluate potential responses of anadromous fish populations to an increasingly variable environment, we performed a hierarchical analysis of 21 Chinook salmon populations from the Pacific Northwest, examining support for changes in river flows and flow variability on population growth. More than half of the rivers analyzed have already experienced significant increases in flow variability over the last 60 years, and this study shows that this increase in variability in freshwater flows has a more negative effect than any other climate signal included in our model. Climate change models predict that this region will experience warmer winters and more variable flows, which may limit the ability of these populations to recover.

5.
Evol Appl ; 6(2): 165-79, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23467446

ABSTRACT

Captively reared animals can provide an immediate demographic boost in reintroduction programs, but may also reduce the fitness of colonizing populations. Construction of a fish passage facility at Landsburg Diversion Dam on the Cedar River, WA, USA, provided a unique opportunity to explore this trade-off. We thoroughly sampled adult Chinook salmon (Oncorhynchus tshawytscha) at the onset of colonization (2003-2009), constructed a pedigree from genotypes at 10 microsatellite loci, and calculated reproductive success (RS) as the total number of returning adult offspring. Hatchery males were consistently but not significantly less productive than naturally spawned males (range in relative RS: 0.70-0.90), but the pattern for females varied between years. The sex ratio was heavily biased toward males; therefore, inclusion of the hatchery males increased the risk of a genetic fitness cost with little demographic benefit. Measurements of natural selection indicated that larger salmon had higher RS than smaller fish. Fish that arrived early to the spawning grounds tended to be more productive than later fish, although in some years, RS was maximized at intermediate dates. Our results underscore the importance of natural and sexual selection in promoting adaptation during reintroductions.

6.
J Hered ; 102(5): 567-76, 2011.
Article in English | MEDLINE | ID: mdl-21697079

ABSTRACT

Molecular parentage permits studies of selection and evolution in fecund species with cryptic mating systems, such as fish, amphibians, and insects. However, there exists no method for estimating the number of offspring that must be assigned parentage to achieve robust estimates of reproductive success when only a fraction of offspring can be sampled. We constructed a 2-stage model that first estimated the mean (µ) and variance (v) in reproductive success from published studies on salmonid fishes and then sampled offspring from reproductive success distributions simulated from the µ and v estimates. Results provided strong support for modeling salmonid reproductive success via the negative binomial distribution and suggested that few offspring samples are needed to reject the null hypothesis of uniform offspring production. However, the sampled reproductive success distributions deviated significantly (χ(2) goodness-of-fit test p value < 0.05) from the known simulated reproductive success distribution at rates often >0.05 and as high as 0.24, even when hundreds of offspring were assigned parentage. In general, reproductive success patterns were less accurate when offspring were sampled from cohorts with larger numbers of parents and greater variance in reproductive success. Our model can be reparameterized with data from other species and will aid researchers in planning reproductive success studies by providing explicit sampling targets required to accurately assess reproductive success.


Subject(s)
Models, Genetic , Reproduction/genetics , Salmonidae/genetics , Animals , Female , Genetics, Population , Male , Sexual Behavior, Animal
7.
Genetics ; 167(2): 783-96, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15238528

ABSTRACT

Hedgehog (Hh) signaling is crucial for the development of many tissues, and altered Hh signal transduction can result in cancer. The Drosophila Costal1 (Cos1) and costal2 (cos2) genes have been implicated in Hh signaling. cos2 encodes a kinesin-related molecule, one component of a cytoplasmic complex of Hh signal transducers. Mutations in Cos1 enhance loss-of-function cos2 mutations, but the molecular nature of Cos1 has been unknown. We found that previously identified alleles of Cos1 actually map to two separate loci. Four alleles of Cos1 appear to be dominant-negative mutations of a catalytic subunit of protein kinase A (pka-C1) and the fifth allele, Cos1(A1), is a gain-of-function allele of the PKA regulatory subunit pka-RII. PKA-RII protein levels are higher in Cos1(A1) mutants than in wild type. Overexpression of wild-type pka-RII phenocopies Cos1 mutants. PKA activity is aberrant in Cos1(A1) mutants. PKA-RII is uniformly overproduced in the wing imaginal disc in Cos1(A1) mutants, but only certain cells respond by activating the transcription factor Ci and Hh target gene transcription. This work shows that overexpression of a wild-type regulatory subunit of PKA is sufficient to activate Hh target gene transcription.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Kinesins/genetics , Amino Acid Sequence , Animals , Conserved Sequence , DNA Primers , Drosophila/enzymology , Hedgehog Proteins , Molecular Sequence Data , Polymerase Chain Reaction , Recombination, Genetic , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Wings, Animal/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...